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FULTON’S DEGENERACY LOCI FORMULA

Deneracy Loci formula [Ful91]

Let w ∈ Sn be a permutation. If every component of the
degeneracy loci Ωw(f ) has the expected codimension ℓ(w), then

[Ωw(f )] = Sw(a | b) ∈ CHℓ(w)(X).
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VECTOR BUNDLES

Fix a base scheme X. A vector bundle over X is a surjective
morphism π : E→ X which has a local trivialization: {Ui} → X
such that

Ui × Ar Ui ×X E E

Ui X

∼=

□

r is called the rank of E

For AG students: equivalently, let E be a locally free sheave of
finite rank r. Then E is the total space:

E = Tot(E) := SpecX(Sym(E)).



VECTOR BUNDLES
The fiber Ex over x ∈ X is the pullback of E along x→ X,
isomorphic to Ar. A (global) section to π : E→ X is a morphism
σ : X→ E such that π ◦ σ = idX. (= an element of the vector
space H0(X, E).) The zero section sends every x ∈ X to 0 ∈ Ex.

E

X

π σ

Ex ∼= Ar

x
zero section

Slogan

Sections to a vector bundle E→ X are generalized functions on X.



VECTOR BUNDLES

Usual functorial constructions on vector spaces naturally
upgrade to vector bundles:

⊕,⊗, ker, coker,Hom, (−)∨,Sym,
∧

,det . . .

The vanishing locus of a section σ consists of x ∈ X such that
σ(x) = 0.

Examples:

Line bundles over Pn

The algebraic vector bundles over Pn (any field) are
OPn(d), d ∈ Z. The algebraic sections are

H0(Pn,O(d)) = degree d polynomials in x0, x1, . . . , xn.
not regular functions, but sections to a line bundle!



VECTOR BUNDLES

The picture over R:

O(0) = OP1 O(1) O(−1) (tautological)

H0(OP1) ∼= k H0(O(1)) ∼= k · {x, y} H0(O(−1)) = 0

vanishing locus
of generic section P1 1 point No non-zero section



VECTOR BUNDLES

Tangent, cotangent, canonical, normal bundles

Let X be a scheme. The cotangent sheaf ΩX is the sheaf of
differentials over X. The tangent sheaf is the dual TX := (ΩX)

∨.
The canonical sheaf is the determinant ωX := detΩX. For a
closed embedding X→ Y, the normal sheaf
NX/Y := (IX/Y/I2

X/Y)
∨ is the difference of tangent sheaves:

0→ TX → TY → NX/Y → 0.

tangent bundle

canonical line bundle
= volume forms

normal bundle
= first order deformations



VECTOR BUNDLES

Tautological bundles

For spaces like Pn, Gr(k,n), Fln which classify linear subspaces,
there are tautological bundles (universal subbundles of the trivial
bundle) S where the fiber over [P] is P itself.

The universal quotient bundles Q are complements of universal
subbundles:

0→ S → O⊕N → Q→ 0.

Cheerful fact

TGr(k,n)
∼= Hom(S,Q).



VECTOR BUNDLES

CLASSIFYING SPACES AND CHERN CLASSES

DEGENERACY LOCI AND DOUBLE SCHUBERT POLYNOMIALS



UNIVERSAL PROPERTIES OF GRASSMANNIANS

Pn,Gr(k,n),Fln classifies vector bundles over arbitrary X:

• X→ Pn ∼←→ line bundles with n + 1 sections.

• X→ Gr(k,n) ∼←→ rank k subbundles of O⊕n
X .

• X→ Fln
∼←→ completely flagged rank n bundles.

Every VB over X is a pullback of the universal subbundle, along
a classifying map φ:

E S

X Gr(k,n)

□

φ



CLASSIFYING SPACES AND UNIVERSAL BUNDLES

What if we want to classify all rank n bundles? For this we use
the convenient gadget of formal colimits of spaces.

A classifying space for rank n vector bundles, denoted BGLn
(GLn is the structure group for rank n vector bundles), satisfies

X→ BGLn
∼←→ rank n VBs over X.

classifying maps ∼←→ pullbacks of universal bundle.

Examples of classfying spaces

• BGm = P∞ = limk→∞ Pk.

• BGLn = Grn = limk→∞ Gr(k,n).
• BGL = Gr = limn→∞ BGLn.



CHOW RING OF CLASSIFYING SPACES

• CH•(P∞) ∼= Z[c1], c1: universal first Chern class.

• CH•(Grn) ∼= Z[c1, c2, . . . , cn], ci: universal ith Chern class.

• CH•(Gr) ∼= CH•(Fl∞) ∼= Z[c1, c2, . . . ]. cf. [AF23b]

• Other types: Cohomology of BSO2n,BSO2n+1,BSp2n, . . .

Slogan

ci represents the stable limit of Schubert varieties.



CHERN CLASSES

Recall that

VB E→ X ∼←→ classifying map X φ→ BGLn.

The ith Chern class ci(E) ∈ CH•(X) is the pullback φ∗(ci) from

the infinite Grassmannian.

The Chern classes are shadows of E: they measure the
degeneracy locus where i generic sections become linearly
dependent. Roughly: how twisted E is.

The top Chern class cn(E) represents the vanishing locus of a
generic section.



CHERN CLASSES

Some examples of top Chern class:

O(1)

one point

O(d)

d points

cubic polynomials on ℓ ⊆ P3

G(1, 3)

[ℓ]

Sym3 S∨

27 lines on a cubic surface



CHERN CLASSES

Chern polynomial c(E) := 1 + c1(E) + · · ·+ cn(E).

Properties of Chern classes:

• Whitney sum

0→ E→ F→ G→ 0 =⇒ c(F) = c(E)c(G).

• Additive group law for c1 of tensor products

c1(E⊗ F) = c1(E) + c1(F).

• Functoriality: commute with pullbacks.



CHERN CLASSES

Splitting principle: can always pretend E splits as
⊕

Li (via
pulling back to Fl(E),Li = Ei/Ei−1).

c(E) =
∏

(1 + c1(Li)
Chern roots

).

Chern classes are elementary symmetric polynomials in the

Chern roots αi:

cr(E) = er(α1, α2, . . . , αn).



APPLICATION: 27 LINES ON A CUBIC SURFACE I

E := Sym3 S∨ over G(1, 3) = Gr(2, 4), rank E = 4.

deg c4(E) = # lines on a general cubic surface.

Take Chern roots c(S∨) = (1 + α)(1 + β). We have

c(S∨) = 1 + s + s ,

so
α+ β = s , αβ = s .

By splitting principle,

c(E) = c(Sym3 S∨)
= (1 + 3α)(1 + 2α+ β)(1 + α+ 2β)(1 + 3β)



APPLICATION: 27 LINES ON A CUBIC SURFACE II

= (1 + 3(α+ β) + 9αβ)
(
1 + 3(α+ β) + 2(α+ β)2 + αβ

)
=

(
1 + 3σ + 9σ

)(
1 + 3σ + 2σ2 + σ

)
=

(
1 + 3σ + 9σ

)(
1 + 3σ + 3σ

)
So

c4(E) = 9σ · 3σ = 27σ ,

and deg c4(E) = 27.

Image from [AMS16]
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DEGENERACY LOCI

We relativize the rth Chern class construction.

The rth degeneracy locus of a morphism f : E→ F of vector
bundles over X is

Ωr(f ) = {x ∈ X | rank fx ≤ r} .

If r = 0 then we recover the zero locus.

Chern classes as degeneracy loci

Consider the map of bundles over X, f : O⊕r → E, defined by
generic sections σ1, . . . , σr. By definition,

Ωr(f ) = {x ∈ X | (σ1(x), . . . , σr(x)) not full rank },
=⇒ [Ωr(f )] = cr(E).



DEGENERACY LOCI: PORTEOUS FORMULA

Relative version of rth Chern class. For any sequence of ring elements
a = (a1, a2, . . . ), let

∆e
f (a) := det



af af+1 · · · · · · ae+f−1

af−1 af · · · · · · ae+f−2
...

...
. . .

...
...

...
. . .

...
af−e+1 af−e+2 · · · · · · af



Thom-Porteous formula [EH16, Theorem 12.4]

For a bundle map f : E→ F over smooth base, if every
component of Ωr(f ) has the expected codimension, then

[Ωr(f )] = ∆e−k
f−k

(
c(F− E)

)
:= ∆e−k

f−k

[
c(F)
c(E)

]
.



DEGREES OF DETERMINANTAL VARIETIES

Application of Porteous Formula [EH16, Theorem 12.5]

A: e× f matrix of linear forms on Pr. Mk(A) ⊂ Pr: scheme cut
out by (k + 1)× (k + 1) minors. If Mk has the expected
codimension (e− k)(f − k) in Pr, then

deg (Mk) =

e−k−1∏
i=0

i!(f + i)!
(k + i)!(f − k + i)!

.

This includes Segre embeddings Pr × Ps, Grassmannians, Flag
varieties, etc.



FLAGGED DEGENERACY LOCI

Let E•,F• be completely flagged vector bundles with a bundle
map

0 = E0 ↪→ E1 ↪→ · · · ↪→ En = E
f−→ F = Fn ↠ · · ·↠ F1 ↠ F0 = 0.

Given w ∈ Sn, define the flagged degeneracy locus

Ωw(f ) =
{

x ∈ X | rank
(

f ij
x : (Ei)x →

(
Fj
)

x

)
≤ rk(w)[i, j]

}
.



FLAGGED DEGENERACY LOCI

E0
E1
E2
...
En

F0
F1
F2
...
Fn

f ij

rank

E0
E1
E2
...
En

F0 F1 F2 · · · Fn

rij

r00 r01 r02

r10 r11

r20

Slogan

It suffices to check the rank conditions at Ess(w).



DOUBLE SCHUBERT POLYNOMIALS

Recall the definition of double Schubert polynomials:

Sw(x | y) = Sw (x1, . . . , xn | y1, . . . , yn)

=

{∏
i+j≤n

(
xi − yj

)
if w = [n,n− 1, . . . , 1]

∂iSwsi(X;Y) if w(i) < w(i + 1)

Equivalently,

Sw(x | y) =
∑

v−1u=w
ℓ(u)+ℓ(v)=ℓ(w)

(−1)ℓ(v)Su(x)Sv(y).



FULTON’S DEGENERACY LOCI FORMULA

Let f : E• → F• be a map of flagged bundles over smooth base
X. Let ai := c1 (ker Fi ↠ Fi−1) and bj := c1 (Ei/Ei−1).

Deneracy Loci formula [Ful91]

If every component of Ωw(f ) has the expected codimension
ℓ(w), then

[Ωw(f )] = Sw(a | b) ∈ CHℓ(w)(X).



PROOF IDEA I

• First consider degeneracy loci Dw of map of flagged vector

spaces: V•
f−→ V•. Recall: Dw are matrix Schubert varieties.

• f ∈ Hom(V,V) has B = B(V)× B(V∨) biaction, under
which Dw is invariant. Flags are B-invariant!

• CHB(pt) ∼= CHT(pt) ∼= Z[x1, . . . , xn | y1, . . . , yn] and

[Dw]
T = Sw(x | y).

• Relativize to maps of flagged bundles. [AF23a] □



PROOF IDEA II

Let Fl := Fl∞ be the infinite flag variety. Let S∞ := limn→∞ Sn.

• Schubert varieties Σw indexed by w ∈ S∞ are universal
degeneracy loci.

• CH•
T(Fl) ∼= Z[t1, t2, · · · | c1, c2, . . . ].

• [Σw]
T = Sw(t | c)

• Pullback of [Σw]
T gives

[Ωw] = Sw(x | y)

where xi = c1(Fi/Fi−1) and yi = c1(kerEi → Ei−1). [AF23b]
□



EXAMPLE 5.49: SCHUBERT VARIETIES

Slogan

Schubert varieties are degeneracy loci!

• Over Fln, let G• be a trivial flagged bundle of rank n. Let T•
be flagged tautological bundle.
• Let E• := (O⊕n/Gn−•)

∨ and F• := T∨
• . Let f : En → Fn be

the identity.
• fij : Ei → Fj takes a linear functional vanishing on Gn−i to

its restriction on Tj, so im fij = (Tj/Gn−i ∩ Tj)
∨.

• Ωw(f ) contains flags H•:

dim
(
Hj/

(
Gn−i ∩Hj

))∨
= j− dim

(
Gn−i ∩Hj

)
≤ rk(w)[i, j],

same as dim
(
Gi ∩Hj

)
≥ j− rk(w)[n− i, j].

• Conclude that this is the Schubert variety Xw0w(G•) (Xw if
grade by codimension).



EXAMPLE 5.49: SCHUBERT VARIETIES

Set CH•(Fln) ∼= Z[x1, . . . , xn]/(e1, . . . , en).
Let’s evaluate:
• ker Fi−1 → Fi is the ith dual tautological line bundle S∨i , so

c1(ker Fi → Fi−1) = xi.

• Ei/Ei−1 = OFln trivial so c1(Ei/Ei−1) = 0.

• Plugging in: [Σw0w] = Sw(x | 0) = Sw(x).

Exercise 5.50
Dual map f∨ : T• → On/Gn−•. Rank conditions =⇒
Ωw−1(f∨) = Xw0w(G•). c1(kerE∨

i → E∨
i−1) = 0, and

c1(F∨
i /F∨

i−1) = c1(Si) = −c1(S∨i ) = −xi. Therefore,

Sw−1(0 | −x) = Sw(x | 0) = Sw(x).



SYMMETRIES OF SCHUBERT POLYNOMIALS

– Involution.
Sw−1(x | y) = Sw(−y | −x).

Proof : dualize E•
f→ F•.

– Cauchy formula.

Sw(x | y) =
∑

vu=̇w

Su(x | t)Sv(t | y)

=
∑

v−1u=̇w

Su(x | t)Sv(−y | −t).

Proof : decomposition of the diagonal in Fl× Fl.



EXAMPLE 5.47: ORTHOGONAL FLAGS I

Fix a (non-Hermitian) inner product on C4, and consider the
locus Z = {F• ∈ Fl4(C) | F3 = F⊥

1 }. We calculate the class [Z]:
• The inner product is equivalent to an isomorphism
α : C4 → (C∨)4 and upgrades to a bundle map

T• : C4 × Fl4 → (C∨)4 × Fl4 : T∨
•

, flagged with tautological bundles.

• Z is the locus F• : rankα31 = 0, which is

Z =
⋃

Ωw(α)

rkw[3,1]=0

i.e. w1 = 4. In fact Z = Ω4123(w), 4123 Bruhat-minimal.

• Ess(4123) = {(3, 1)} and rk4123[3, 1] = 0.



EXAMPLE 5.47: ORTHOGONAL FLAGS II

0

0
0

1

1

1
1

2

1

2
2

3

1

2
3

4

• c1 ((Ti/Ti−1)
∨) = xi, and

c1(kerTi → Ti−1) = c1 ((Ti/Ti−1)
∨) = −xi.

• The class of Z is

S4123(x | −x) = 2x1(x1 + x2)(x1 + x3).

□



EXAMPLE 5.48: ISOTROPIC FLAGS

A flag in Fln is isotropic if Fi = F⊥
n−i for all i. IFln ⊆ Fln denotes

the isotropic flag variety. A similar argument shows that

IFl4(C) = Ω4312(α), ℓ(4312) = 5.

However, codim IFl4(C) = 4, so [IFl4(C)] ̸= S4312!

Alert
Expected codimension matters!



THEOREM 5.56: PORTEOUS FORMULA I

Let w(p, q, r) be the permutation having diagram
[r + 1, q]× [r + 1, p]:

w(p, q, r) = [1 through r | p + 1 through p + q− r | rest ]

w(3, 4, 1) = [145623]
Essw = {(3, 4)}

Say we have f : E→ F of ranks p, q. We have

Ωr(f ) = Ωw(p,q,r)(f ) =⇒ [Ωr(f )] = Sw(p,q,r)( first Chern classes ).



THEOREM 5.56: PORTEOUS FORMULA II

Now,
Sw(p,q,r)(x | y) = det

[
eq−r+j−i(x | y)

]
i,j∈[p−r]

where ed(x | y) =
∑

i+j=d(−1)jei(x)hj(y) is the double elementary
symmetric polynomial.

Plugging in first Chern classes, we recover

Thom-Porteous Formula [BGP25, Theorem 5.56]

If every component of Ωr(f ) has codimension (p− r)(q− r) =
ℓ(w(p, q, r)), then

[Ωr(f )] = det
[
cq−r+j−i(F− E)

]
i,j∈[p−r] .



ONE MORE APPLICATION: PINCH POINTS OF

SURFACES

The projection π : S→ P3 of a smooth surface S ⊂ Pn has pinch
points where dπ : TS → π∗TP3 fails to be injective.

Proposition 12.6 [EH16]

The number of pinch points of a general projection of a smooth
surface S ⊂ Pn to P3 is

6 deg(S) + deg
(
4ζc1 + c2

1 − c2
)

where the ci = ci (ΩS) are the Chern classes of the cotangent
bundle of S, and ζ is the hyperplane class.



OPTIONAL EXTRA: DOUBLE GROTHENDIECK

POLYNOMIALS

K-theoretic degeneracy loci formula [[FL94, Theorem 3]]

In K0(X), let xi = 1− [ker Fi → Fi−1] and yj = 1− [(Ej/Ej−1)
∨].

Then, the class of Ωw(f ) is represented by a double Grothendieck
polynomial:

[Ωw(f )] = Gw(x | y).
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