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1 Equivariant Topological K-Theory

1.1 Topological K-Theory

Topological K-theory was first formulated by Atiyah. Hoping to derive an ana-
logue of Grothendieck-Riemann-Roch in the smooth setting, K-theory was de-
veloped for the definition of topological index in the renowned Atiyah-Singer
index theorem. One of the hallmarks of K-theory was Adams’ solution to the
Hopf invariant one problem, which implies the parallelizability of spheres and
existence of division algebras over the reals.

For the ease of exposition, we fix our base field k “ C unless otherwise
specified.

Definition 1.1. Let X be a compact Hausdorff space and VectCpXq the set of
isomorphism classes of finite rank complex vector bundles over X. The K-theory
ring K0pXq is defined to be the Grothendieck group of VectCpXq, i.e. the stable
isomorphism classes of formal differences of elements in VectCpXq, i.e.

trEs ´ rFs | rEs, rFs P VectCpXqu { „,

where

rE1s ´ rF1s „ rE2s ´ rF2s if there exists rWs such that E1 ‘ F2 ‘ W – E2 ‘ F1 ‘ W.

Equivalently,

rEs “ rE 1
s ` rE2

s if there exists a short exact sequence 0 Ñ E 1
Ñ E Ñ E2

Ñ 0.

Addition and multiplication of K0pXq are given by the direct sum and tensor
product.

Definition 1.2. For X with a base point, the reduced K-theory rK0pXq is defined to
be the kernel of the map K0pXq Ñ K0pptq given by restricting vector bundles over
X to the base point.

Proposition 1.3.
K̃0

pX`q – K0
pXq.

Definition 1.4. The negative degree piece K´npXq is defined to be K0 pRn ˆ Xq.
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While K0 is itself a commutative ring, the negative degree pieces fit together
with the former as a graded commutative ring. To see this, consider the external
product induced by the projection maps

X ˆ Y

X Y.

πX πY

The external product K´npXq b K´mpYq Ñ K´n´mpX ˆ Yq is defined as

rEs b rFs ÞÑ rπ˚
XE b π˚

YFs.

Then, for the internal product, we set Y “ X and pull back along the diagonal:

Proposition 1.5. The multiplication

K´n
pXq b K´m

pXq Ñ K´n´m
pX ˆ Xq

∆˚

ÝÝÑ K´n´m
pXq

makes
À8

n“0 K´npXq into a commutative graded ring.

Bott periodicity allows us to either extend the definition to all Z-degrees or
change the grading into Z{2.

Theorem 1.6 (Bott periodicity). There is an isomorphism K´npXq Ñ K´n´2pXq,
in the form of multiplication by the Bott class.

A similar periodicity holds for real K-theory, where it becomes 8-periodic.

Theorem 1.7. Topological K-theory is a generalized cohomology theory.

1.2 Equivariant Topological K-Theory

Like Borel equivariant cohomology for G-spaces, topological K-theory admits an
equivariant version on the category of G-spaces. This was introduced by Segal in
his PhD thesis. Fok 2023

Definition 1.8. Let G be a compact Lie group acting on a locally compact Haus-
dorff space X. An G-equivariant vector bundle on X is a fiber bundle V Ñ E Ñ X
where
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(a) V is a complex G-representation.

(b) The structure map π : E Ñ X is G-equivariant.

Definition 1.9. Let VectG
CpXq be the set of isomorphism classes of finite rank

complex G-vector bundles over X. For X compact, we define the equivariant
K-theory ring K0

GpXq to be the Grothendieck group of VectG
CpXq, with addition

and multiplication given by ‘ and b.

Reduced equivariant K-theory is defined as the kernel of K0
GpXq Ñ K0

Gpptq
whenever X has a G-fixed point. Same as before, for non-compact X, define K0

GpXq to
be rK0

G pX`q where G fixes the point of compactification. Define the negative degree
piece K´n

G pXq to be K0
G pRn ˆ Xq, where Rn is the trivial representation. Define

the product structure by pulling back the external product along the diagonal. A
similar Bott periodicity holds:

Theorem 1.10 (Segal ’68). K´q
G pXq is naturally isomorphic to K´q´2

G pXq, the map
being multiplication by a certain element of K´2

G pptq (equivariant Bott class).

Example 1.11. A G-equivariant vector bundle over a point is simply a complex
G-representation. Therefore,

K0
Gpptq – RCpGq

where the latter is the representation ring of G.

Example 1.12. If H is a Lie subgroup of G, then K‚
GpG{Hq – K‚

Hpptq – RCpHq.
This is because a G-equivariant vector bundle over G{H is determined by the
restricted H-action on the fiber over the identity coset eGH.

Example 1.13. For a G-space X, a Lie group homomorphism φ : H Ñ G induces
an H-action on X, so it induces a homomorphism K‚

GpXq Ñ K‚
HpXq.

The following properties of equivariant K-theory are in parallel with Borel
cohomology.

Example 1.14. If G acts on X trivially, then K‚
GpXq becomes isomorphic to RCpGq b

K‚pXq.

Example 1.15. If G acts freely on X, then there is an isomorphism of commutative
monoids VectG

CpXq – VectCpX{Gq, so

K‚
GpXq – K‚

pX{Gq.
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Proposition 1.16. The constant map X Ñ pt endows K‚
GpXq the structure of an

RCpGq-algebra.

The great feature of localization also holds for equivariant K-theory.

Theorem 1.17 (Segal localization, toric version). Let T be a compact torus
acting on a locally compact Hausdorff space X. Then the restriction map

i˚ : K˚
TpXq Ñ K˚

T

´

XT
¯

– RCpTq b K˚
´

XT
¯

becomes an isomorphism after localizing the coefficient ring RCpTq –

Zrx˘1
1 , . . . , x˘1

k s at the zero ideal.

Theorem 1.18 (Segal localization, general version). Let p be a prime ideal of
RCpGq, A an abelian subgroup supporting p, and X a locally compact Hausdorff
G-space. Then the restriction map

i˚ : K˚
GpXq Ñ K˚

G

´

G ¨ XA
¯

becomes an isomorphism after localizing the coefficient ring RCpGq at p.

The toric localization theorem implies a K-theoretic version of the fixed point
formula, called Atiyah-Segal localization formula.
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2 Equivariant Algebraic K-Theory

2.1 Algebraic K-Theory of Rings

Constructions in topological K-theory generalize in many ways to algebraic set-
tings. The Serre-Swan theorem establishes a connection between vector bundles
and projective modules. Therefore, it is natural to consider the Grothendieck
group construction on projective modules. Weibel 2013

Definition 2.1. For R associative unital, let ProjpRq denote the isomorphism classes
of finitely generated projective R-modules. The zeroth algebraic K-group of the
ring R is

K0R :“ GrpProjpRqq.

Define the reduced zeroth K-group by modding out the image of Z Ñ

K0R, n ÞÑ rR‘ns.
Unlike the topological situation, it is not as clear how to extend this definition

to higher graded pieces. Classically, K1 and K2 were defined by allusion to group
homology.

Definition 2.2. Let r–, –s denote taking commutators. The first algebraic K-group
of the ring R is defined as

K1R :“ GLpRq{rGLpRq, GLpRqs.

Let eij be the elementary matrix with 1s on the diagonal and at position pi, jq.
Define the subgroup of GLpRq,

EpRq :“ xreij | r P R, i, j P Ny.

Then, we have equivalently,

K1R :“ GLpRq{EpRq.

Definition 2.3. The Steinberg group StpRq is defined via the following generators

txr
ij | r P R, i ‰ ju
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and relations
$

’

’

&

’

’

%

xr
ijx

s
ij “ xr`s

ij
”

xr
ij, xs

jℓ

ı

“ xrs
iℓ if i ‰ ℓ,

”

xr
ij, xs

kℓ

ı

“ 1 if i ‰ ℓ and j ‰ k

Let φ : StpRq Ñ EpRq be the surjective group homomorphism sending xr
ij ÞÑ reij.

Then, we define
K2R :“ ker φ.

Theorem 2.4 (Kervaire, Steinberg). The surjection StpRq Ñ EpRq is the universal
central extension of EpRq. As a consequence,

K2pRq – H2pEpRq, Zq

Extending these definitions following group homology becomes extremely
cumbersome after K2. Quillen in the ’70s came up with the brilliant idea to use the
classifying space functor to transform this into a problem in homotopy theory.

Definition 2.5. (Quillen) The higher algebraic K-groups are defined to be the
homotopy groups of BGLpRq`.

KnpRq :“ πnBGLpRq
`

The ` stands for the plus construction. The key observation is that simply
taking πn of the space BGLpRq results in π1BGLpRq “ GLpRq, but we really
want the abelianization GLpRq{EpRq. The plus construction modifies cells in the
classifying space in order to achieve that.

2.2 Algebraic K-Theory for Categories

Using these ideas, Quillens extended the definition of K-groups to any exact
category.

Definition 2.6. Let C be an exact category. The category QC has object obpCq and
morphisms

HomQCpX, Yq :“ tX Ð Z Ñ Yu

where the first arrow is an admissible epi and the second admissible mono.

Let Ω denote the loop space functor. We can apply homotopy theoretic
constructions again and define the K-groups:
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Definition 2.7. The K-groups of the exact category C are

KipCq :“ πi`1pΩBQCq

2.3 Equivariant K-Theory of Schemes

For a scheme X, we may replace VectpXq with CohpXq, the abelian category of co-
herent sheaves over X, and carry out the same Grothendieck group constructions.

Definition 2.8. Let CohG
pXq be the category of equivariant coherent sheaves on

an algebraic scheme X with action of a linear algebraic group G. The equivariant
algebraic K-groups are defined as

KG
i pXq “ πi`1

´

BQ CohG
pXq

¯

.
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3 Equivariant Algebraic K-Theory of G-Rings

The previous construction is the algebraic analogue for K-theory of equivariant
vector bundles, so what we are missing is an equivariant theory for rings with a
group action. These are ubiquitous: krx1, . . . , xns has a natural Sn-action, C has
a C2-action by conjugation, and so on. The goal is to use the machinery at hand
and construct a genuine G-spectrum from a G-ring R. Merling 2016

3.1 Modules over G-Rings

Definition 3.1. A G-ring is a ring R with a left action G Ñ AutpRq. We write
gprq “ gr for the automorphism g : R Ñ R determined by g P G. Then ghr “

gphprqq “ gphrq.

If R is a G-ring, then ProjpRq automatically has a G-action, where gM is defined
by twisting the scalar multiplication on R by g.

Definition 3.2. For a R-module M – equivalently, φ : R Ñ EndAb M, define g ¨ M
as

g ¨ φ : R
g

ÝÑ R Ñ EndAb M.

In other words, g ¨ M has the same underlying abelian group as M, but the scalar
multiplication becomes

r ¨gM m :“ gr ¨M m.

Similarly, we have for free a G-action on the category of modules over a G-ring
spectrum R.

However, by applying the nonequivariant constructions to this category with
G-action, we obtain just a spectrum with G-action, and not a genuine G-spectrum
- the K-theory G-space we obtain has deloopings with respect to all spheres Sn

with trivial G-action, but it does not deloop with respect to representation spheres
SV . To turn these into genuine G-categories, Merling introduced homotopy fixed
points and pseudo equivariant functors for categories with a G-action.

3.2 Homotopy Fixed Points of a G-Category

Definition 3.3. A G-category is a functor G Ñ Cat. Explicitly, the data of such
a functor is a category C , and for each g P G, an endofunctor pg¨q : C Ñ C such
that pe¨q “ idC and pg¨q ˝ ph¨q “ pghq¨.

Denote the category of G-categories and G-equivariant functors by GCat.
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Definition 3.4. For subgroups H Ď G, we define the H-fixed point category C H of
a G-category C as the subcategory with objects those C P C such that hC “ C and
morphisms those f P C such that h f “ f for all h P H. This definition coincides
with the categorical definition as limH C .

Proposition 3.5. The classifying space functor B : Cat Ñ Top commutes with
fixed points, namely

BpC H
q “ pBC q

H.

Definition 3.6. A functor between G-categories F : C Ñ D is a weak G-equivalence
if it induces a weak G-equivalence on classifying spaces BF : BC Ñ BD .

Remark 3.7. Similar to Cat, GCat has the structure of a 2-category whose 0, 1, and
2-morphisms are G-categories, G-equivariant functors, and G-natural transforma-
tions.

Recall, the homotopy fixed points for a G-space X is defined to be MapspEG, XqG.
The following will be our model for EG.

Definition 3.8. For a topological group G, define rG to be the topological G-
groupoid with object space G and morphism space G ˆ G.

Remark 3.9. The classifying space B rG is G-equivalent to the universal principal
G-bundle EG since rG is a contractible category (every object is initial and terminal)
and it has a free G-action.

Definition 3.10. The homotopy fixed points of a G-category C , denoted by C hG,
are defined as Catp rG, C qG, namely the G-equivariant functors rG Ñ C and the
G-natural transformations between these.

We have the following explicit description of C hG:
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Proposition 3.11. The objects of the homotopy fixed point category C hG are pairs
pC, f q where C is an object of C and f : G Ñ MorpC q is a map from G to
morphisms of C such that f pgq : C Ñ g ¨ C and f satisfies the condition f peq “ idC
and the cocycle condition

f pghq “ f pgqpg ¨ f phqq.

A morphism pC, f q Ñ pC1, f 1q is given by a morphism α : C Ñ C1 in C such that
the following diagram commutes for any g P G :

C gC

C 1 gC 1

f pgq

α gα

f 1pgq

In the special case where C “ Π is a group, the above cocycle condition takes
on a familiar meaning:

Theorem 3.12. Suppose Π is a group with G-action. The homotopy fixed point
category ΠhG is equivalent to the crossed functor category CatˆpG, Πq whose
objects are crossed homomorphisms G Ñ Π and whose morphisms σ : α Ñ β are
the elements σ P Π such that

βpgqpg ¨ σq “ σαpgq.

3.3 Pseudo Equivariant Functors

Definition 3.13. A pseudo equivariant functor between G-categories C and D is
a functor Θ : C Ñ D , together with natural isomorphisms of functors θg for all
g P G

C C

D D

g

Θ
θg

Θ

g

such that θe “ id and for g, h P G we have an equality of natural transformations,
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C C C C C

D D D D D

g

Θ

h

θg
Θ

θh
Θ

gh

Θ
θgh

Θ

g h gh

Proposition 3.14. A pseudo equivariant functor Θ : C Ñ D naturally induces an
equivariant functor

Θ̃ : Catp rG, C q Ñ Catp rG, Dq.

Corollary 3.15. A pseudo equivariant functor Θ : C Ñ D , induces functors
Θ̃H : C hH Ñ DhH on homotopy fixed points for all H Ď G.

Corollary 3.16 (Homotopy invariance of homotopy fixed points). A pseudo
equivariant functor Θ : C Ñ D which is a nonequivariant equivalence induces
equivalences of homotopy fixed points

C hH
Ñ DhH

for all H Ď G.

3.4 Twisted Group Rings

In the non-equivariant setting, the set of G-representations over a ring R and
the set of RrGs-modules are isomorphic as abelian monoids. We extend this to
equivariantly.

Suppose that R is a commutative G-ring with action given by θ : G Ñ AutpRq.
Observe that R is an RG-algebra, where RG is the subring of G-invariants. We can
reinterpret θ as a group homomorphism θ : G Ñ EndRG R, and ask the question
of when we can extend this to a ring map. More precisely, we seek to extend θ
RG-linearly from G to the whole of RrGs. This leads to the definition of a twisted
group ring.

Definition 3.17. As an R-module, the twisted group ring RGrGs is the same as
the group ring RrGs, which is the case when G acts trivially on R. We define the
product on RGrGs by RG-linear (not R-linear) extension of the relation

prgqpshq “ rgsgh
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for r, s P R and g, h P G.

Much like the case for G-linear actions, we have the bijective correspondence
between RGrGs-modules and semilinear G-representations, i.e., gprmq “ grpgmq

for m P M. If the action of G on R is trivial, then we recover the usual corre-
spondence: an RrGs-module is a left R-module M with linear G-action, namely,
gprmq “ rpgmq. From this point of view an RGrGs-linear map of RGrGs-modules
f : M Ñ N is a map of R-modules, which commutes with the G-action.

We now state a few results that identifies module categories over RGrGs with
homotopy fixed points.

Proposition 3.18. If G is finite and |G|´1 P R, then an RGrGs-module is projective
if and only if it is projective as an R-module.

Proposition 3.19. The homotopy fixed point category ModpRqhG is equivalent to
the category Mod pRGrGsq.

Proposition 3.20. Suppose G is finite and |G|´1 P R. The homotopy fixed point
category ProjpRqhG is equivalent to the category Proj pRGrGsq.

3.5 Equivariant K-Theory of G-Rings

In order to get a genuine G-spectrum, we need to devise an equivariant delooping
machine.

Definition 3.21. A Hopf G-space is an H-space with equivariant multiplication
map and for which multiplying by the identity element is G-homotopic to the
identity map such as, for example, ΩX for a G-space X.

A G-map X Ñ Y of homotopy associative and commutative Hopf G-spaces is
an equivariant group completion if the fixed point maps XH Ñ YH are group
completions for all H Ď G

We extend the following non-equivariant construction by Quillen to show the
existence of such equivariant completions.

Definition 3.22. Let S be a symmetric monoidal category. The category S´1S
has objects pairs pm, nq of objects in S. A morphism pm, nq Ñ pp, qq in S´1S is an
equivalence class of triples

pr, r ‘ m
f

Ñ p, r ‘ n
g

Ñ qq
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where two triple are equivalent if there is an isomorphism of the first entries that
makes the relevant diagrams commute. Composition for a pair of morphisms is
defined as

pr, r ‘ m
f

Ñ p, r ‘ n
g

ÝÑ qq ˝ ps, s ‘ p
ϕ
ÝÑ u, s ‘ q

ψ
ÝÑ vq

“ ps ‘ r, s ‘ r ‘ m
ϕ˝ps‘ f q
ÝÝÝÝÝÑ u, s ‘ r ‘ n

ψ˝ps‘gq
ÝÝÝÝÝÑ vq.

Theorem 3.23 (Quillen ’73). Let S be a symmetric monoidal groupoid such that
translations are faithful. i.e.,

Autpsq Ñ Autps ‘ tq

is injective for all s, t P S. Then the map BS Ñ BS´1S is a group completion.

Theorem 3.24 (Merling ’16). Let S be a symmetric monoidal G-groupoid such
that translations are faithful. Then the map BS Ñ BS´1S is an equivariant group
completion.

Finally, the payoff.

Definition 3.25. The equivariant algebraic K-theory space of a G-ring R is the
G-space KGpRq “ B

`

S´1S
˘

, where S is the symmetric monoidal G-category Catp rG,
ProjpRqq.

For H a subgroup of G, the equivariant algebraic K-theory groups are given
by

KH
i pRq “ πH

i pKGpRqq .

These definitions naturally extends to a genuine Ω ´ G-spectrum.
Below are a few of the consequences of this definition.

Theorem 3.26. The assignment R Ñ KGpRq is functorial and factors through
equivariant Morita equivalences.

Theorem 3.27. For the topological rings C and R with trivial G-action for any
finite group G,

KGpCq » kuG and KGpRq » koG,

where kuG and koG are connective versions of equivariant topological K-theory.
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Theorem 3.28. For the topological ring C with C2 conjugation action

KC2pCq » kr,

where kr is a connective version of Atiyah’s Real K-theory.

Theorem 3.29. For a Galois extension of rings R Ñ S with Galois group G,

KGpSq
G

» KpRq.

Michael’s speculation: connection with equivariant motivic cohomology?
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