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1 Equivariant Topological K-Theory

1.1 Topological K-Theory

Topological K-theory was first formulated by Atiyah. Hoping to derive an ana-
logue of Grothendieck-Riemann-Roch in the smooth setting, K-theory was de-
veloped for the definition of topological index in the renowned Atiyah-Singer
index theorem. One of the hallmarks of K-theory was Adams’ solution to the
Hopf invariant one problem, which implies the parallelizability of spheres and
existence of division algebras over the reals.

For the ease of exposition, we fix our base field k = C unless otherwise
specified.

Definition 1.1. Let X be a compact Hausdorff space and Vectc(X) the set of
isomorphism classes of finite rank complex vector bundles over X. The K-theory
ring K’(X) is defined to be the Grothendieck group of Vectc(X), i.e. the stable
isomorphism classes of formal differences of elements in Vectc(X), i.e.

{[E] = [F] | [E], [F] € Vecte(X)}/ ~,
where
[E1] — [F1] ~ [Ez2] — [F2] if there exists [W] such that Ei @, ®@W >~ E; @ FL ®W.
Equivalently,
[E] = [E'] + [E"] if there exists a short exact sequence 0 — E’ — E — E” — 0.

Addition and multiplication of K°(X) are given by the direct sum and tensor
product.

Definition 1.2. For X with a base point, the reduced K-theory K°(X) is defined to
be the kernel of the map K°(X) — K%(pt) given by restricting vector bundles over
X to the base point.

Proposition 1.3.
RO(X4) =~ KY(X).

Definition 1.4. The negative degree piece K~"(X) is defined to be K° (R" x X).



While K? is itself a commutative ring, the negative degree pieces fit together
with the former as a graded commutative ring. To see this, consider the external
product induced by the projection maps

XxY
X Y.
The external product K™*(X) @ K™™(Y) — K™"7"(X x Y) is defined as
[E]® [F] — [XE @ Ty F].
Then, for the internal product, we set Y = X and pull back along the diagonal:

Proposition 1.5. The multiplication

K ™M(X)@K™(X) — K""(X x X) 25 k="-m(X)
makes @),_o K" (X) into a commutative graded ring.

Bott periodicity allows us to either extend the definition to all Z-degrees or
change the grading into Z /2.

Theorem 1.6 (Bott periodicity). There is an isomorphism K~"(X) — K~"2(X),
in the form of multiplication by the Bott class.

A similar periodicity holds for real K-theory, where it becomes 8-periodic.

I Theorem 1.7. Topological K-theory is a generalized cohomology theory.

1.2 Equivariant Topological K-Theory

Like Borel equivariant cohomology for G-spaces, topological K-theory admits an
equivariant version on the category of G-spaces. This was introduced by Segal in
his PhD thesis. Fok

Definition 1.8. Let G be a compact Lie group acting on a locally compact Haus-
dorff space X. An G-equivariant vector bundle on X is a fiber bundle V. — E — X
where



(a) V is a complex G-representation.

(b) The structure map 7 : E — X is G-equivariant.

Definition 1.9. Let Vectg(X) be the set of isomorphism classes of finite rank
complex G-vector bundles over X. For X compact, we define the equivariant
K-theory ring K2(X) to be the Grothendieck group of Vectg (X), with addition
and multiplication given by @ and ®.

Reduced equivariant K-theory is defined as the kernel of K%(X) — K%(pt)
whenever X has a G-fixed point. Same as before, for non-compact X, define K (X) to
be IZOG (X+) where G fixes the point of compactification. Define the negative degree
piece KZ"(X) to be K (R” x X), where R" is the trivial representation. Define
the product structure by pulling back the external product along the diagonal. A
similar Bott periodicity holds:

Theorem 1.10 (Segal ‘68). Kgq(X) is naturally isomorphic to K(_;q_Z(X), the map
being multiplication by a certain element of Kaz(pt) (equivariant Bott class).

Example 1.11. A G-equivariant vector bundle over a point is simply a complex
G-representation. Therefore,

KZ(pt) = Rc(G)

where the latter is the representation ring of G.

Example 1.12. If H is a Lie subgroup of G, then K& (G/H) = K};(pt) =~ Rc(H).
This is because a G-equivariant vector bundle over G/H is determined by the
restricted H-action on the fiber over the identity coset ecH.

Example 1.13. For a G-space X, a Lie group homomorphism ¢ : H — G induces
an H-action on X, so it induces a homomorphism K¢ (X) — Kz (X).

The following properties of equivariant K-theory are in parallel with Borel
cohomology.

Example 1.14. If G acts on X trivially, then K (X) becomes isomorphic to R¢(G) ®
K*(X).

Example 1.15. If G acts freely on X, then there is an isomorphism of commutative
monoids Vectg(X) ~ Vecte(X/G), so

K& (X) = K*(X/G).
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Proposition 1.16. The constant map X — pt endows K¢ (X) the structure of an
Rc(G)-algebra.

The great feature of localization also holds for equivariant K-theory.

Theorem 1.17 (Segal localization, toric version). Let T be a compact torus
acting on a locally compact Hausdorff space X. Then the restriction map

i* . K5(X) — K% (XT> ~ Re(T) @ K* (XT)

becomes an isomorphism after localizing the coefficient ring Rc(T) =
Z[x{—rl, . .,x];—H] at the zero ideal.

Theorem 1.18 (Segal localization, general version). Let p be a prime ideal of
Rc(G), A an abelian subgroup supporting v, and X a locally compact Hausdorff
G-space. Then the restriction map

"t K5(X) — K& (G . XA>
becomes an isomorphism after localizing the coefficient ring Rc(G) at p.

The toric localization theorem implies a K-theoretic version of the fixed point
formula, called Atiyah-Segal localization formula.



2 Equivariant Algebraic K-Theory

2.1 Algebraic K-Theory of Rings

Constructions in topological K-theory generalize in many ways to algebraic set-
tings. The Serre-Swan theorem establishes a connection between vector bundles
and projective modules. Therefore, it is natural to consider the Grothendieck
group construction on projective modules. Weibel

Definition 2.1. For R associative unital, let Proj(R) denote the isomorphism classes
of finitely generated projective R-modules. The zeroth algebraic K-group of the
ring R is

KoR := Gr(Proj(R)).

Define the reduced zeroth K-group by modding out the image of Z —
KoR,n — [R®"].

Unlike the topological situation, it is not as clear how to extend this definition
to higher graded pieces. Classically, K; and K, were defined by allusion to group
homology.

Definition 2.2. Let [, -] denote taking commutators. The first algebraic K-group
of the ring R is defined as

KiR := GL(R)/[GL(R), GL(R)].

Let e;; be the elementary matrix with 1s on the diagonal and at position (i, j).
Define the subgroup of GL(R),

E(R) :=(rejj | re R,i,j € N).
Then, we have equivalently,
KiR := GL(R)/E(R).
Definition 2.3. The Steinberg group St(R) is defined via the following generators

{xij | re R, i+ j}



and relations
xfjxfj = x;]*s
xf]., xjffg =xj; ifi#/4,
xfj,xié =1 ifi#fandj+#k

Let ¢ : St(R) — E(R) be the surjective group homomorphism sending Xjj > rejj.
Then, we define
KR := ker ¢.

Theorem 2.4 (Kervaire, Steinberg). The surjection St(R) — E(R) is the universal
central extension of E(R). As a consequence,

K>(R) = Hy(E(R), Z)

Extending these definitions following group homology becomes extremely
cumbersome after K. Quillen in the "70s came up with the brilliant idea to use the
classifying space functor to transform this into a problem in homotopy theory.

Definition 2.5. (Quillen) The higher algebraic K-groups are defined to be the
homotopy groups of BGL(R)*.

Ku(R) := m, BGL(R)*

The * stands for the plus construction. The key observation is that simply
taking 71, of the space BGL(R) results in 1yBGL(R) = GL(R), but we really
want the abelianization GL(R)/E(R). The plus construction modifies cells in the
classifying space in order to achieve that.

2.2 Algebraic K-Theory for Categories

Using these ideas, Quillens extended the definition of K-groups to any exact
category.

Definition 2.6. Let C be an exact category. The category QC has object 0b(C) and
morphisms
Homge(X,Y) :={X —Z - Y}

where the first arrow is an admissible epi and the second admissible mono.

Let () denote the loop space functor. We can apply homotopy theoretic
constructions again and define the K-groups:
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Definition 2.7. The K-groups of the exact category C are

Ki(C) := 41 (QBQC)

2.3 Equivariant K-Theory of Schemes

For a scheme X, we may replace Vect(X) with Coh(X), the abelian category of co-
herent sheaves over X, and carry out the same Grothendieck group constructions.

Definition 2.8. Let Coh®(X) be the category of equivariant coherent sheaves on
an algebraic scheme X with action of a linear algebraic group G. The equivariant
algebraic K-groups are defined as

1

KS(X) = 74 <BQ Cth(X)> :



3 Equivariant Algebraic K-Theory of G-Rings

The previous construction is the algebraic analogue for K-theory of equivariant
vector bundles, so what we are missing is an equivariant theory for rings with a
group action. These are ubiquitous: k[x, ..., x,] has a natural S,-action, C has
a Cp-action by conjugation, and so on. The goal is to use the machinery at hand
and construct a genuine G-spectrum from a G-ring R. Merling

3.1 Modules over G-Rings

Definition 3.1. A G-ring is a ring R with a left action G — Aut(R). We write
g(r) = 8r for the automorphism g : R — R determined by ¢ € G. Then &"r =

g(h(r)) =8("r).

If R is a G-ring, then Proj(R) automatically has a G-action, where gM is defined
by twisting the scalar multiplication on R by g.

Definition 3.2. For a R-module M — equivalently, ¢ : R — Enday, M, define g- M
as
g 9 :R3 R — Endap M.

In other words, g - M has the same underlying abelian group as M, but the scalar
multiplication becomes
regM M= Sy m.

Similarly, we have for free a G-action on the category of modules over a G-ring
spectrum R.

However, by applying the nonequivariant constructions to this category with
G-action, we obtain just a spectrum with G-action, and not a genuine G-spectrum
- the K-theory G-space we obtain has deloopings with respect to all spheres 5"
with trivial G-action, but it does not deloop with respect to representation spheres
SV. To turn these into genuine G-categories, Merling introduced homotopy fixed
points and pseudo equivariant functors for categories with a G-action.

3.2 Homotopy Fixed Points of a G-Category

Definition 3.3. A G-category is a functor G — Cat. Explicitly, the data of such
a functor is a category %, and for each g € G, an endofunctor (g) : ¢ — € such
that (e-) = idy and (g-) o (h-) = (gh)-.

Denote the category of G-categories and G-equivariant functors by GCat.
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Definition 3.4. For subgroups H < G, we define the H-fixed point category ¢ of
a G-category ¢ as the subcategory with objects those C € ¢ such that hC = C and
morphisms those f € ¢ such that hf = f for all h € H. This definition coincides
with the categorical definition as limy €.

Proposition 3.5. The classifying space functor B : Cat — Top commutes with
fixed points, namely
B(¢™) = (B%)".

Definition 3.6. A functor between G-categories F : ¢ — & is a weak G-equivalence
if it induces a weak G-equivalence on classifying spaces BF : B¢ — BZ.

Remark 3.7. Similar to Cat, GCat has the structure of a 2-category whose 0, 1, and
2-morphisms are G-categories, G-equivariant functors, and G-natural transforma-
tions.

Recall, the homotopy fixed points for a G-space X is defined to be Maps(EG, X)©.
The following will be our model for EG.

Definition 3.8. For a topological group G, define G to be the topological G-
groupoid with object space G and morphism space G x G.

Remark 3.9. The classifying space BG is G-equivalent to the universal principal

G-bundle EG since G is a contractible category (every object is initial and terminal)
and it has a free G-action.

Definition 3.10. The homotopy fixed points of a G-category %, denoted by %",

are defined as Cat(G, %), namely the G-equivariant functors G — % and the
G-natural transformations between these.

We have the following explicit description of €"¢:



Proposition 3.11. The objects of the homotopy fixed point category €"C are pairs
(C, f) where C is an object of € and f : G — Mor(%¢) is a map from G to
morphisms of € such that f(g) : C — g - C and f satisfies the condition f(e) = idc
and the cocycle condition

f(gh) = f(8)(g - f(h)).
A morphism (C, f) — (C', f) is given by a morphism « : C — C' in € such that

the following diagram commutes for any g € G :

C f(8) ¢C

le lgl)(
C/ () ,
— gC

In the special case where 4" = 11 is a group, the above cocycle condition takes
on a familiar meaning:

Theorem 3.12. Suppose 11 is a group with G-action. The homotopy fixed point
category T1"C is equivalent to the crossed functor category Cat (G,TI) whose
objects are crossed homomorphisms G — I1 and whose morphisms o : « — B are
the elements o € 11 such that

B(g)(g-0) =ou(g).

3.3 Pseudo Equivariant Functors

Definition 3.13. A pseudo equivariant functor between G-categories ¢ and ¥ is
a functor ® : ¥ — 9, together with natural isomorphisms of functors 0, for all
geG

¢ L ¢

@/@
@gg@

such that 6, = id and for g, h € G we have an equality of natural transformations,



i, ¢ ¢
l)/eg e — o o
2 7 — 9

Proposition 3.14. A pseudo equivariant functor © : € — 2 naturally induces an
equivariant functor

® : Cat(G,€) — Cat(G, 2).

Corollary 3.15. A pseudo equivariant functor © : ¢ — 9, induces functors
OH . " — 9" on homotopy fixed points for all H < G.

Corollary 3.16 (Homotopy invariance of homotopy fixed points). A pseudo

equivariant functor © : ¢ — 2 which is a nonequivariant equivalence induces
equivalences of homotopy fixed points

cth - th

forall H < G.

3.4 Twisted Group Rings

In the non-equivariant setting, the set of G-representations over a ring R and
the set of R[G]-modules are isomorphic as abelian monoids. We extend this to
equivariantly.

Suppose that R is a commutative G-ring with action given by 0 : G — Aut(R).
Observe that R is an RC-algebra, where RC is the subring of G-invariants. We can
reinterpret 6 as a group homomorphism 6 : G — Endgc R, and ask the question
of when we can extend this to a ring map. More precisely, we seek to extend 6
RC-linearly from G to the whole of R[G]. This leads to the definition of a twisted
group ring.

Definition 3.17. As an R-module, the twisted group ring R;[G] is the same as
the group ring R[G], which is the case when G acts trivially on R. We define the
product on Rg[G] by R®-linear (not R-linear) extension of the relation

(rg)(sh) = rdsgh
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forr,se Rand g,h € G.

Much like the case for G-linear actions, we have the bijective correspondence
between R;|[G]-modules and semilinear G-representations, i.e., g(rm) = 8r(gm)
for m € M. If the action of G on R is trivial, then we recover the usual corre-
spondence: an R[G]-module is a left R-module M with linear G-action, namely,
g(rm) = r(gm). From this point of view an Rg[G]-linear map of Rg[G]-modules
f: M — N is a map of R-modules, which commutes with the G-action.

We now state a few results that identifies module categories over Rg[G| with
homotopy fixed points.

Proposition 3.18. If G is finite and |G|~ € R, then an Rg[G]-module is projective
if and only if it is projective as an R-module.

Proposition 3.19. The homotopy fixed point category Mod(R)"C is equivalent to
the category Mod (Rg[G]).

Proposition 3.20. Suppose G is finite and |G|~! € R. The homotopy fixed point
category Proj(R)"C is equivalent to the category Proj (Rg[G]).

3.5 Equivariant K-Theory of G-Rings

In order to get a genuine G-spectrum, we need to devise an equivariant delooping
machine.

Definition 3.21. A Hopf G-space is an H-space with equivariant multiplication
map and for which multiplying by the identity element is G-homotopic to the
identity map such as, for example, Q)X for a G-space X.

A G-map X — Y of homotopy associative and commutative Hopf G-spaces is
an equivariant group completion if the fixed point maps X" — Y are group
completions for all H < G

We extend the following non-equivariant construction by Quillen to show the
existence of such equivariant completions.

Definition 3.22. Let S be a symmetric monoidal category. The category S!S
has objects pairs (m, 1) of objects in S. A morphism (m,n) — (p,q) in S~'S is an
equivalence class of triples

(r,r®&m i» p,r®n é>q)
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where two triple are equivalent if there is an isomorphism of the first entries that
makes the relevant diagrams commute. Composition for a pair of morphisms is
defined as
f 8 ¢ ¥
(r,rédm=>p,rén-=>qg)o(s,s®p - u,s®q —v)

- @rsorem S, soron 8, )

Theorem 3.23 (Quillen '73). Let S be a symmetric monoidal groupoid such that
translations are faithful. i.e.,

Aut(s) —> Aut(s®Dt)

is injective for all s, t € S. Then the map BS — BS™1S is a group completion.

Theorem 3.24 (Merling “16). Let S be a symmetric monoidal G-groupoid such
that translations are faithful. Then the map BS — BS~1S is an equivariant group
completion.

Finally, the payoff.

Definition 3.25. The equivariant algebraic K-theory space of a G-ring R is the
G-space Kg(R) = B (S71S), where S is the symmetric monoidal G-category Cat(G,
Proj(R)).

For H a subgroup of G, the equivariant algebraic K-theory groups are given
by
Ki'(R) = mf' (KG(R)).

1

These definitions naturally extends to a genuine () — G-spectrum.
Below are a few of the consequences of this definition.

Theorem 3.26. The assignment R — Kg(R) is functorial and factors through

equivariant Morita equivalences.

Theorem 3.27. For the topological rings C and R with trivial G-action for any
finite group G,
KG(C) >~ kZ/lG and KG(R) ~ kOG,

where kug and kog are connective versions of equivariant topological K-theory.
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Theorem 3.28. For the topological ring C with C, conjugation action
Kc,(C) ~ kr,

where kr is a connective version of Atiyah’s Real K-theory.

Theorem 3.29. For a Galois extension of rings R — S with Galois group G,
Kg(S)¢ ~ K(R).

Michael’s speculation: connection with equivariant motivic cohomology?
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