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1 How many degree d rational curves pass through 34 — 1

general points in the projective plane?

A rational plane curve of degree d is parametrized by an embedding
P! P, (s:8) = (fs,1): gls, ) : h(s, 1))
where f, g, h are homogeneous of degree d, each having the form
aosdto + als"l_lt1 N
Let’s count dimensions. Modding out scalars:
3d+1)—1=3d+2.
Modding out reparametrizations by PGL3:

3d+1)—1-3=3d—1.

Therefore, we expect the locus of degree d rational plane curves passing through 3d — 1

general points to be zero-dimensional.

Problem 1.1. How many degree d rational curves pass

through 3d — 1 general points in the projective plane?



Call this number N,;.

Example 1.2. Two points determine a unique line.

Ny =1

Example 1.3. 5 points determine a unique conic.

Ny =1
Example 1.4. Steiner 1848:
N3 =12
Example 1.5. Zeuthen 1873:
Ny = 620
Example 1.6. '80s:
N5 = 87304

Example 1.7. Kontsevich’s recursive formula 1994:

3d — 4 3d — 4
N; = Z Ny, Ny d4ds <d3<3dA2>dA<3dA1>>

dA+L1[;:d

~~ Recursive structure on the boundary of My 3,1 (IP%,d).



Useful references:

¢ (Kock and Vainsencher 2003) Kontsevish’s Formula for Rational Plane Curves.

http://www.dmat.ufpe.br/ israel/kontsevich.html

e "FP-Notes” (Fulton and Pandharipande 1997) Notes on Stable Maps and Quantum
Cohomology. https://arxiv.org/abs/alg-geom/9608011

e (Abramovich 2006) Lectures on Gromov-Witten Invariants of Orbifolds. https:
//arxiv.org/abs/math/0512372

* (Clader 2024) Curve Counting and Mirror Symmetry. nceps://ums.ans org/jounats/notices 202400/

noti3022/n0ti3022.html?adat=0ctober’202024&trk=3022&pdfissue=202409&pdffile=rnoti-p1140.pdf&cat=none&type=.html

¢ (Pandharipande and Thomas 2016) 13/2 Ways of Counting Curves. https://arxiv.org/abs/1111.1552



http://www.dmat.ufpe.br/~israel/kontsevich.html
https://arxiv.org/abs/alg-geom/9608011
https://arxiv.org/abs/math/0512372
https://arxiv.org/abs/math/0512372
https://www.ams.org/journals/notices/202409/noti3022/noti3022.html?adat=October%202024&trk=3022&pdfissue=202409&pdffile=rnoti-p1140.pdf&cat=none&type=.html
https://www.ams.org/journals/notices/202409/noti3022/noti3022.html?adat=October%202024&trk=3022&pdfissue=202409&pdffile=rnoti-p1140.pdf&cat=none&type=.html
https://arxiv.org/abs/1111.1552

2 Moduli of Stable Curves

2.1 Motivation

How is Kontsevich’s method different from the ones before?

Previous Kontsevich
What'’s being counted honest subvarieties parametrizations up to isomorphism
Moduli space Severi varieties Moduli of stable maps
Incidence condition | Loci in the moduli space Marked points on stable maps
Key technique Localization Recursive structure on the boundary

~- Different compactifications of the smooth locus.
~+ Kontsevich’s method does not require a full understanding of the Chow ring of the

moduli space.

I Slogan. Slogan: Stable stuff has finite automorphisms.

* Stable rational curves have NO (non-trivial) automorphisms, so we get rid of

ambiguity of parametrizations.
* Get a fine moduli space with a universal family.

¢ In general, still get a coarse moduli space.




2.2 Stable Curves

Definition 2.1. An n-pointed smooth rational curve

(C/p]./' . -;pn)

is a projective smooth rational curve C equipped with a choice of n distinct points
p1,--.,pn € C, called the marks.

An isomorphism between two n-pointed rational curves

¢:(Cop1,.-.pn) — (CLP0,... 0)

is an isomorphism ¢ : C = C’ which respects the marks (in the given order), i.e.,

op)=p, i=1,...,n

Proposition 2.2. For n > 3, there is a fine moduli space My, for n-pointed smooth

rational curves up to isomorphism.

Example 2.3. n = 3. Classical fact: 2 +1 = 3 points uniquely determines a projective

transformation over IP!. Thus,

(CI pll PZI P3) i (]Pll O/ 1/ OO)

~ Myp3 = pt.

Example 2.4. n = 4.
(CI Plz pZ/ P3I P4) = (]Pll 0/ 1/ o0, ﬁ4)

~ M0,4 = ]PI\{O, 1,00}.

I Problem 2.5. Not compact!

~+ Needs to introduce degenerations.



Definition 2.6. A tree of projective lines is a connected curve such that

¢ Each irreducible component (twig) is isomorphic to a projective line.
* The points of intersection of the components are ordinary double points.

e There are no closed circuits. That is, if a node is removed, the curve becomes

disconnected.

The three properties together are equivalent to saying that the curve has arithmetic

genus Zero.

Definition 2.7. n > 3. A stable n-pointed rational curve is a tree C of projective lines,
with n distinct marks which are smooth points of C, such that every twig has at least

three special points (either marks or nodes).

——e— ———o—
—_—
———— B e S . [
i PN
Qo ———o

stable stable stable < 3 marks mark = node triple point  not a tree

Figure 2.8: Examples and non-examples of stable curves.

Remark 2.9. Stable ~» no automorphisms.

Theorem 2.10. (Knudsen) For each n > 3, there is a fine moduli space My ,, for stable
n-pointed rational curves. It is a projective variety and contains the subvariety My, as a

dense open subset.



Example 2.11. My, is a compactification of My 4 =~ P'\{0, 1, 0}. In fact,
MO,‘I = ][)1.

What are the three new degeneracies corresponding to 0,1,0? In other words, what

happens when p4 approaches 0,1, 00?

Figure 2.12: The ‘0’, ‘1", and ‘o0’ are stable curves with an additional twig.

N
™~ (i)
—
(ii)
~
~
(iii)
—

Figure 2.13: Other instances from Kock.



2.3 Stabilization

~+ Adding and forgetting marked points may break stability. ~ Stabilize the new curve
by blowing up / down.

Example 2.14. Adding a new mark 4.

%& is the stabilization of
Pi

Figure 2.15: Blow up if g coincides with a previous mark.

Pn+1 q
is the stabilization of

Figure 2.16: Blow up if g coincides with a node.

Example 2.17. Forgetting p,, 1.

-
N AN

Figure 2.18: Contract the twig with < 3 marked points.



Proposition 2.19. The map

7T Moy — Moy

forgetting py+1 is a morphism.

It is actually something more.

Theorem 2.20. The forgetful morphism

7T Moui1 — Moy

is the universal family Uy, over My,

Proof

Idea: points in Uy, bijectively corresponds to stable (1 + 1)-pointed curves.

10




2.4 Boundary Divisors
Twigs partition marks into disjoint subsets.
The boundary of My, is stratified by set partitions of marked points, ordered by refinement.

Example 2.21. Stratification for M%. Numbers on the side count different orderings of

the 6 marked points.

Figure 2.22: The poset structure of My, cf. Kock

Definition 2.23. Denote by [n] the set of n marks. There is an irreducible boundary
divisor D(A | B) for each partition [n] = A u B with A, B each having at least 2 elements.
~ Points in D(A | B) correspond to curves with two twigs and specified marked points.

~~ Intersecting boundary divisors corresponds to taking common refinement of set

partitions.

Example 2.24. n = 4. There are three set partitions of [4]:

(12 | 34), (13 | 24), (14 | 23)

11



This gives rise to the three boundary divisors of M 4:

D(12 | 34) D(13 | 24) D(14 | 23)

Recall that Mg 4 =~ IP!, where every two points are linearly equivalent. Therefore,
D(12 | 34) ~ D(13 | 24) ~ D(14 | 23) in M. (+)

Now, consider the morphism

7T . MO,YL - Mo,ijkl/ (C/ Pl/ ey Pn) g (CI pi/ p]/ Pkl Pl)

This is a composition of forgetful maps which remembers any given quadruplet of points
labeled i, j, k, I. Pulling back relation (*) along 71, we obtain the fundamental relations for

MO,T’Z .

Proposition 2.25 (Fundamental relations).

Y. D(A|B)= > D(A|B)= ) D(A|B) inA'(Myp,).
ijeA ike A ileA
k,leB jleB j,keB

Abbreviating,
D(ij | kI) = D(ik | jl) = D(il | kj).

(call these sums special boundary divisors.)

In fact, these completely describe the Chow ring;:

12



Theorem 2.26 (Keel). The Chow ring A(My,,) is generated by classes of boundary divisors
D(A | B), with the following relations.

e For two partitions (A1 | B1) and (Ay | By) with no inclusions among A, ..., By,

[D(A1 | B1)] - [D(Az2 | B2)] = 0.

* The fundamental relations.

Proposition 2.27 (Recursive structure). There is a canonical isomorphism
D(A | B) =~ Mg aox} X Mo poxy

for which x is the unique node on a two-twigged curve.

13



3 Moduli of Stable Maps

3.1 Stable Maps

Definition 3.1. An n-pointed map is a morphism y : C — P, where C is a tree of
projective lines with n distinct marks which are smooth points of C.

An n-pointed stable map y : C — IP” is such a map for which any twig mapped to a
oint is stable as a pointed curve.

Example 3.2. The second map contracts a P! with only two marks, so not stable.

stable stable
e
stable
_
not stable not stable

stable map < finite automorphisms

Theorem 3.3. There exists a coarse moduli space My , (IP", d) parametrizing isomorphism
classes of stable n-pointed maps of degree d to IP".

My, (P7,d) is a projective normal irreducible variety, locally isomorphic to a quotient of
a smooth variety (moduli of parametrizations) by a finite group action. There exists a fine
moduli space M ,,(IP", d) for stable maps with trivial automorphisms, and it a dense open

set of My ,(IP", d).

I Proposition 3.4. The dimension of M ,,(P",d) is (r +1)(d +1) =1 -3 + n.

14



3.2 Forgetful Maps and Evaluation Maps

Two kinds of forgetful maps:

¢ Forget points:

Mo i1(P",d) — Mo, (P, d).
* (n > 4) Forget that you were a map:
Mo, (P",d) — Mo

~ Just take the source tree of lines with n marks and stabilize.

A new species: evaluation maps
ev; : Mg ,(P",d) — IP’, (1 :(C,p1, .-, pn) = P") — u(p)).
I Proposition 3.5. All evaluation maps and most forgetful maps (n > 4) are flat.

“Total evaluation map"

ev: Mo,(P",d) > P " x---xP',  p— (u(pr),..., 1(pn))-

Example 3.6. (Flat pullbacks.) Let D be a divisor on IP". Then, the pullback of D along
ev; is a divisor on My, (IP",d).

Let V be a subvariety of IP". If 7t : Mg ,+1(IP",d) — My, (IP’,d) is the map forgetting
Pn+1, then

inc(V) := moev {(V)

is the locus in My ,(IP",d) consisting of stable maps whose image is incident to V.

15



3.3 Boundary Divisors
~ Set partitions get upgraded to weighted partitions.

Definition 3.7. A d-weighted partition of [n] consists of the data AU B = [n],ds +dp =d,
(where #A > 2 ifdy = 0,and #B > 2 if dg = 0).

For each d-weighted partition, there exists an irreducible boundary divisor D(A, B;d 4, dp).
S
da dp
Proposition 3.8 (Recursive structure). There is a gluing isomorphism
D(A, B;da,dp) = Mo,as(xy (P",da) xpr Mo puixy (P", dp)

where the fiber product is taken over the evaluation maps at the node x.

B x
i . A B
X —
da d da dp
Proposition 3.9 (Fundamental relations). Pulling back along forgetful maps

Moy, (P",d) — My, — My a, we once again obtain

> D(ABydadg)= > D(ABdadg)= Y DI(ABda,dg).

AUB=(n] AUB=[n] AUB=(n]
ijeA i,keA ileA
kleB jleB j.keB

dp+dp=d da+dpg=d dp+dp=d

In terms of special boundary divisors, we once again have

D(ij | kI) = D(ik | jl) = D(il | kj).

16



Remark 3.10. A few cute examples.

Moo(P", 1) = G(1,7).

My 1(IP", 1) =~ P(U) for the universal bundle of G(1,7).

My (IP", 1) is isomorphic to IP" x IP” blown up along the diagonal.

My ,(P",0) =~ Mg, x P,

My o(IP",2) is isomorphic to the space of complete conics.
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4 Gromov-Witten Invariants and Kontsevich’s Recursive

Formula

4.1 Kontsevich’s Formula
Theorem 4.1 (Kontsenich’s Formula). Let N; be the number of rational curves of degree

d passing through 3d — 1 general points in the plane. Then the following recursive relation

holds:

3d —4 3d —4
Ny + Z ( )diNdA'NdB'dAdB: 2 ( )dANdA'dBNdB'dAdB
da+dp=d 3ds -1 da+dp=d 3dy —2

da=1,dp=1 da=>1,dg=1

Since we know N1 = 1, the formula allows for the computation of any Nj.

Proof

A consequence of the fundamental relation
D(gr | st) = D(gs | rt).

To get numbers out of a linear equivalence of divisors, we hope to intersect both
sides with some curve.

Take n = 3d marked points, d > 2. Label the marked points in a convenient way:
{1,2,...,n—4,q,1,s,t}.

Take general lines {;, ¢, and n — 2 other general points py,...,py_4,ps, pt- In

My, (IP?,d), consider the incidence locus

Y := evfl(pl) NN eV;E4(pn_4) N ev;l(fq) nev, L(4) nevy t(ps) nev; H(py).

Namely, Y is the locus where the image of the stable pointed map is incident to all

given n — 2 points and 2 lines. By Bertini, Y is a non-singular curve contained in the

18



automorphism-free locus M, (P?,d), intersecting boundary divisors transversally
at general points on the boundary (i.e. no excess intersections).

~+Y n D(A, B;d4,dg) should be a finite set of points!

We now claim that the formula follows from
#Y n D(gqr | st) = #Y n D(gs | rt).

First,

D(qr | st) = > D (A, B;dy,dg).
qreAsteB,d+dp=d

Examine terms in this sum:

Special Case I d4 = 0;dp = d.

Y nD(A,B;dy,dp) # D iff A ={q,r}.

da = 0 means the A-twig C4 gets contracted to the node x, which then has to

land on the point of intersection £, N £.

B = everything but g, means the B-twig Cp gets 3d — 2 marked points.

In total, the image is a degree d rational curve with 3d —2 + node =34 —1

marked points!
~#Y n D({q,r}, the rest;0,d) = Nd

2

degd
3d — 1 marks

19




Special Case Il d4 = d;dp = 0.

~ Empty intersection.

Everything else 1 <d4 <n —1.

L YﬁD(A,B;dA,dB) # (O iff |A| =3d4+1.

e Number of set partitions (A | B) s.t. |A| =3da+1,g9,r€ A, s,te B:

3d —4
3da—1)
* Recursive structure: Image of C4 is a (3d4 — 1)-pointed rational curve of

degree d4. Image of Cp is a (3dp — 1)-pointed rational curve of degree dp.

~+ Factor of Ny, Ng,.

* Image of g, lands on intersections of the image of C4 with £, /;, respectively.

~~ Factor of d3.

¢ Image of the node x = C4 n Cp lands on intersections of images of C4, Cp.

~~ Factor of d 4dp.
¢ In total for each such divisor,

3d —4
. _ 13
#Y N D(A,B;da,dp) = d3dpNg, Na, (3dA — 1>'

20




Ca
du
[ N
\ d 4 choices

Ca
_ A L
r
d 4 choices
C A C B
da
—_—
X
d odp choices

3d —4
LHS = N; + > Ny, Ng,d5dg (3d 1).
dt+dp=ddy=>1,dp>1 AT

Thus,

Next,

D(gs | rt) = > D (A, B;dy,dg).
q,5€ArteB,dp+dp=d

Examine terms in this sum:

Special Case I d4 = 0;dp = d.

~ Empty intersection.

Special Case 1 d4 = d;dp = 0.

~ Empty intersection.

Everything else 1 <dy <n —1.

3d —4
. 2 2
#Y n D(A, B;da,dp) = Ny, Ng,ddg <3dA — 2)'

21




So

All in all,

Ny

3d—4
RHS = Nd NdBdZdz( )
dA+dB=d,zd;4>1,dB>1 ! ATB 3d4—2
3d — 4
T Ny, Ny d5d

dp+dp=dds>1,dp=>1

B Z NdANdBdildzB(

dp+dp=d,ds>1,dp>1

22
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4.2 Gromov-Witten Invariants

Let X be a convex variety (i.e. having enough lines: P, Grassmannians, the Flag variety,

etc., and products thereof).
e Tx globally generated.

* A(X) has a natural basis consisting of Schubert classes.

Fix an effective class B € A1(X). We can consider the moduli space of stable n-pointed

maps p : C — X whose image [1(C)] = B:

Moln (X, ﬁ) .
We may similarly integrate pullback classes of the appropriate codimension and expect

the result to be a number.

Definition 4.2. Let 71,..., 7, € A*(X) be classes such that

Zcodim (7i) = dim X +J c1(Tx)+n—3.
p

Then, the Gromov-Witten invariant is defined as

Is (71 ) =j evi (1) U+ U eva® (7).

MO,H (Xrﬂ)

This is an integral over the (virtual) fundamental class My, (X, B). In the case that 7;

all correspond to honest subvarieties I';, the Gromov-Witten invariant then counts the

number of curves in the cycle class 3 which are incident to all T’;.

23



Figure 4.3: Number of curves in the class  incident to I'y, ..., I',.

For X = IP” (or Pic X = Z), by I; and My ,(IP",d) we mean g = d - h'~! (d times class
of a straight line).

Example 4.4. For IP?, we have

3d—1 factors

the number of rational curves of degree d which pass through 3d — 1 general points.

Example 4.5. In IP3, the invariant I (k% - h? - h? - h?) is the number of lines incident to four

given lines.
Example 4.6. For IP3, the number

(K- W20 h3)
e e
6 3

is the number of twisted cubics meeting 6 lines and 3 points. It is computed in the

21-dimensiona space Mg (IP%,3).

Example 4.7. ***27 lines example?

24



4.3 The Reconstruction Theorem

Proposition 4.8. Useful properties of Gromov-Witten invariants on P

* (Mapping to a point) The only non-zero Gromov-Witten invariants with d = 0 are

those with 3 marks and ) codim y; = r. In this case we have

Ip(y1-72-73) = flpr Y1 U Y2 U Y3

* (Two-pointed invariants) The only non-zero Gromov-Witten invariants with less than

three marks are

LW =1,

i.e. there is a unique line passing through two distinct points.

* (Divisor equation) Suppose d > 0 and that one of the classes is the hyperplane class,

say Yn+1 = h. Then

Li(yir--n-h)=1g(y1---vu)-d

The recursive structure of boundary divisors, namely
D (A, B;da,dp) ~ Mo augxy (P, da) xpr Mooy (P, dp)

acquires the following new guise:

25



Lemma 4.9 (Splitting lemma). For a boundary divisor D, let « : D < M be the natural
inclusion, and let 1 : D = (evy, x eva)_1 (A) — M x Mg be the inclusion as the
inverse image of the diagonal. Then for any classes y1,...,vn € A* (IP") the following
identity holds in A* (Ma x Mp) :

Latevt(y) = Z <H evy (7a) -evy, (he)> X (H evy (7p) -evi, (hf)>

e+f=r \acA beB

Corollary 4.10 (A general recursive formula).

fDevi‘mw---uev;:(vn): >, <Hva'h€>-1d3 (ﬂwhf).

etf=r acA beB

All Gromov-Witten invariants for IP” can similarly be reconstructed from these recur-
sions, knowing just a single initial condition.

Theorem 4.11 (Reconstruction theorem for IP"). (Kontsevich-Manin and Ruan-Tian.)
All the Gromov-Witten invariants for P" can be computed recursively, and the only necessary

initial value is Iy (h" - h") = 1, the number of lines through two points.

d N,
1 1

2 1

3 12

4 620

5 87304
6 26312976

7 14616808192

First few invariants for P2

26
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5 Quantum Cohomology

We have some huge recursions and numbers that blows up. We should try organizing

them into generating series.

5.1 An Interlude on Generating Functions

Definition 5.1. Let {N;}}2, be a sequence of numbers. The exponential generating

function for Nj is

»‘|><

Slogan.

unordered objects ~+ ordinary generating functions

labeled objects ~» exponential generating functions

Example 5.2. The derivative of an exponential generating function is a shift in its indices:

Lk

P Zk Nk Zk,Nk+1

Example 5.3. Fibonacci numbers.

¢ Initial conditions:

No=N; = 1.

e Recursion:

Niy2 = Ngy1 + Ni
¢ In terms of the generating function:
Fxx == Fx + F.

Slogan.

Recursive formulae <= PDE in generating functions

28



5.2 Quantum Cohomology and Associativity of the Quantum Product

~~ Multi indicies: For x = (xg,...,x;) and a = (ay, ..., a,), and define

a _ .40 a —
x*=xy--x; and al=ap!---a,!

~~ By the ‘o’ in (h')*%, we mean take i many times the class &', which is NOT the same
as taking the their product in the Chow ring.

~> Short hand for I;: write
o0
L(yr--ym) == la(vi 1),
d=0

since at most one of the terms is non-zero, namely when

~ Ycodimy; —r—n+3

d
r+1

Definition 5.4. The Gromov-Witten potential for classes (h°)*%, ..., (h")** e A(IP") is the
multi-indexed exponential generating function
Xa
®(x) := > =1 (h%

al
a

x(u)O e x?" 0 L) 1 o o
- B By ) )
ag,...,ay ag: - ar:

Definition 5.5. The partial derivatives of ® are the usual formal partials of a series:

@ijk:2§1<ha-hi~hi-hk>.

a

Definition 5.6. The quantum product for A®(IP") is defined by

hz*h] = Z q)i]'k]’lr_k.

0<k<r

29



I Slogan. ®;;; are the structural constants for the quantum product.

Note that the quantum product now has extra parameters x? in the ®;j.

Definition 5.7. The (big) quantum cohomology ring for P" is A* (P") ®z Q|[[x]]. The

product structure is obtained by extending the quantum product Q[[x]]-linearly.

The quantum product is obviously commutative. Associativity will be established

later.

Example 5.8. (Recovering the usual intersection product.) If one of the three indices of

;i is zero, say i = 0, then

Example 5.9. The fundamental class 1 is the identity for .

I Theorem 5.10. The quantum product = is associative.

Proof
(Sketch) We want to show

(bl ) bt = e (W4 1)
Expanding, this is equivalent to

2 2 PPk = Y Y PpePph”.

e+f=rl+m=r e+f=rl+m=r

Since the /' are independent, we just need to equate coefficients in front of each

30



degree:
Z Djje Py = Z D Dir-

e+f=r e+f=r
These are the WDVV equations (Witten-Dijkgraaf-Verlinde-Verlinde). Further

expanding (abbreviating irrelevant classes to ), we get

Z Z n! I(,),'”A.hi-h]"he>l(’)/.n3'hf'hk'hl)

nplng!
e+f=rnatng=n A-TB

_ Z Z n! I(f)/.nA.hj.hk.he)I(,Yong'hf‘hi'hl>.

na'ng!
e+f:rnA+1/lB:1’l A*T'B

This again follows from the fundamental relation

D (p1p2 | pspa) = D (p2p3 | p1pa)

on the moduli space My, 14(IP",d), via the splitting lemma:

P3
1 ps da
Py P2
np
na K
more marks B

31




5.3 Kontsevich’s Formula via Associativity

The only non-zero invariants for Iy are the 3-pointed invariants Io(h’ - b/ - h*) = {,, h' U
W U k¥, The curve-counting information is contained in the d > 0 part.
Let I+ := > ;.o l;. Then, we can decompose the full Gromov-Witten potential into

d =0and d > 0 parts.

Definition 5.11.

® =0T
where
| YiXjXk i i ok
ol - 3 = Io<h h h)
ijk
is called the classical potential, and
o 1
I'= Z =1 (r*")
n!
n=0

is the quantum potential.

Similarly, the quantum product decomposes into a classical and a quantum part.

Woahl = ) (10 (hi.hj.hk> +ri]_k) 1k

0<k<r

=hn Ul + Z Fijkh"k.

0<k<r

(Holds for more general X.)

I Slogan. The quantum product is a deformation of the classical intersection product.

Theorem 5.12. Associativity of the quantum product on P? implies Kontsevich's recursive

formula.
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Proof

For P2, we have
W sl = B2+ Typph! + Tk
W« h? = T1p1ht + T1poh?
h?«h? = Topiht + TopphY.

The associativity

(hl *hl) cH2 =l (hl *hz)
expands as
Toprht 4+ Topoh® 4+ Ty (lelhl + 1ﬂ122hO> +Ty10h? = Ty (hz + Tkt + 1ﬁ112ho) + T2k

Equating coefficients of h°, we obtain

oo +T1111M122 = T'11211102.

Expanding,

I, ((h2>.nh2h2h2)'+ 22 Z;%%ETI+ ((hz).mthhlhl)lé-(<h2)°"3h1h2h2)

na+np=n

= 3ttt (7)) 1 () w7,

na+ng=n

Interpreting each I, term enumeratively, this is nothing else but Kontsevich’s

formula!

(3d — 4)! ,
Not ) (Bda — 1)1 (3dp — 3)1 AN A5 N,
dy+dg—d

B (3d — 4)! 2
o ; d(3dA—2)!(3dB_z)!dANdAdBNdB'
ATUB=
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More

~ truncated ring with only the three-pointed invariants as structural constants.

@y = i’;—TZdH-Id (hi-hf-hk)

n=0 """ d>0
— I (hf W hk> +q- L (hf W hk> for g := exp(x).

~~ the original definition of the quantum cohomology.

~» small quantum product:

S Wit fori+j<r
h W = o
ght*tI==1 forr <i+j<2r

~+ small quantum cohomology for IP":
Zh,q]/ (h”rl - q> “deformation of the cohomology ring by the q parameter.”

~ “quantum Schubert calculus”

Classically:

Example 5.13. (Pieri rule)
(O'b . (Tg) = Z Oc

lc|=lal+b
a;<ci<a;_1vi
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Example 5.14. (Giambelli’s formula)

gy Ua1+1 Ua1+2
Utlz—l Uaz 0-(12+1
Oay,a0,..0p = | Ogy—2 Oay—1 Oas

Uak—k+1 Uak—k+2 Uak—k+3

Uaﬁ-k—l

Ora2+k72

Uaz+k—3

gy

Example 5.15. (Littlewood-Richardson coefficients) The structural constants CKH equals

the number of skew semistandard Young tableaux of shape A/u and filling v whose

reverse row word is ballot.

$31521 = S52 + 8511 + S43 + 28421 + 8331 + S4111 + S322 + 83211

[1]1] | [1]1]

[1]

[1] [ 1]

2] 1] 1]
2]

4
2

~+ Postnikov (2003): Defined toric SSYT and toric Schur polynomials and formulated

quantum Pieri rule and quantum Kostka numbers in terms of those. Quantum Giambelli

formula is the same as the classical formula.
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2[274]6] 2 k=6, n=16,
35 3
. L6 1724 Ald]=(9,7.6,2,2,0)[2],
1121212]2]5 _
33 4 4 4 )u - (99 99 79 39 39 1)9
124 S =3,9,4,6,2,2)

Figure 5. A semistandard toric tableau of shape A/d/u

The quantum Littlewood-Richardson rule for tableaux is still wide open till this date.

~+ Knutson-Tao honeycomb puzzles for equivariant quantum cohomology.

VN
0
VN0 N

0
0 (
| VAV A VA (N %
RN,
| IV N VS N |

0

FIGURE 4. A puzzle with two equivariant pieces, which are shaded. The
left equivariant piece has weight ys — Yy, the right ys — y4, so this puzzle
contributes (Y4 — y1)(ys — ya) to the calculation of ¢,,3{8i5%1010-

Figure 5.16: An equivariant Knutson-Tao puzzle in the original paper.

~ Partial flag varieties, other types (B, C, ...)
~» Combinatorics for quantum K-theory.

~- Jim Bryan’s work on Banana manifolds and modular forms.

Useful references:

* (Bertiger 2018) Equivariant Quantum Cohomology of the Grassmannian via the Rim

Hook Rule. https://arxiv.org/abs/1403.6218

¢ (Mihalcea 2004) Equivariant Quantum Schubert Calculus. https://arxiv.org/abs/
math/0406066

* (Postnikov 2002) Affine Approach to Quantum Schubert Calculus. https://arxiv.
org/abs/math/0205165
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* (Bertiger 2022) An Equivariant Quantum Pieri Rule for the Grassmannian on Cylin-

dric Shapes. https://arxiv.org/abs/2010.15395

* (Bryan and Pietromonaco 2024) The Enumerative Geometry and Arithmetic of

Banana Nano-Manifolds. https://arxiv.org/abs/2405.04701

Thank you for your attention!
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