Gromov-Witten Invariants and Quantum Cohomology

'Michael' Zeng, Ruofan

September 23, 2024

Contents

1	Hov	w many degree d rational curves pass through $3d-1$ general points in the	oints in the		
	proj	ective plane?	2		
2	Mod	duli of Stable Curves	5		
	2.1	Motivation	5		
	2.2	Stable Curves	6		
	2.3	Stabilization	ç		
	2.4	Boundary Divisors	11		
3	Mod	duli of Stable Maps	14		
	3.1	Stable Maps	14		
	3.2	Forgetful Maps and Evaluation Maps	15		
	3.3	Boundary Divisors	16		
4 Gromov-Witten Invariants and Kontsevich's Recursive Formula					
	4.1	Kontsevich's Formula	18		
	4.2	Gromov-Witten Invariants	23		
	43	The Reconstruction Theorem	25		

5	Qua	Quantum Cohomology	
	5.1	An Interlude on Generating Functions	28
	5.2	Quantum Cohomology and Associativity of the Quantum Product	29
	5.3	Kontsevich's Formula via Associativity	32
	5.4	The Small Ouantum Cohomology, Algebraic Combinatorics, and More	34

1 How many degree d rational curves pass through 3d-1 general points in the projective plane?

A rational plane curve of degree d is parametrized by an embedding

$$\mathbb{P}^1 \to \mathbb{P}^2$$
, $(s:t) \mapsto (f(s,t):g(s,t):h(s,t))$

where f, g, h are homogeneous of degree d, each having the form

$$a_0 s^d t^0 + a_1 s^{d-1} t^1 + \dots + s^0 t^d$$
.

Let's count dimensions. Modding out scalars:

$$3(d+1) - 1 = 3d + 2$$
.

Modding out reparametrizations by PGL₃:

$$3(d+1) - 1 - 3 = 3d - 1$$
.

Therefore, we expect the locus of degree d rational plane curves passing through 3d - 1 general points to be *zero-dimensional*.

Problem 1.1. How many degree d rational curves pass through 3d - 1 general points in the projective plane?

Call this number N_d .

Example 1.2. Two points determine a unique line.

$$N_1 = 1$$

Example 1.3. 5 points determine a unique conic.

$$N_2 = 1$$

Example 1.4. Steiner 1848:

$$N_3 = 12$$

Example 1.5. Zeuthen 1873:

$$N_4 = 620$$

Example 1.6. '80s:

$$N_5 = 87304$$

Example 1.7. Kontsevich's recursive formula 1994:

$$N_d = \sum_{d_A + d_B = d} N_{d_A} N_{d_B} d_A^2 d_B \left(d_B \binom{3d - 4}{3d_A - 2} - d_A \binom{3d - 4}{3d_A - 1} \right)$$

 \leadsto Recursive structure on the boundary of $\overline{M}_{0,3d-1}\left(\mathbb{P}^{2},d\right)$.

Useful references:

- (Kock and Vainsencher 2003) Kontsevish's Formula for Rational Plane Curves. http://www.dmat.ufpe.br/~israel/kontsevich.html
- "FP-Notes" (Fulton and Pandharipande 1997) Notes on Stable Maps and Quantum Cohomology. https://arxiv.org/abs/alg-geom/9608011
- (Abramovich 2006) Lectures on Gromov-Witten Invariants of Orbifolds. https://arxiv.org/abs/math/0512372
- (Clader 2024) Curve Counting and Mirror Symmetry. https://www.ams.org/journals/notices/202409/noti3022/noti3022.html?adat=0ctober%202024&trk=3022&pdfissue=202409&pdffile=rnoti-p1140.pdf&cat=none&type=.html
- (Pandharipande and Thomas 2016) 13/2 Ways of Counting Curves. https://arxiv.org/abs/1111.1552

2 Moduli of Stable Curves

2.1 Motivation

How is Kontsevich's method different from the ones before?

	Previous	Kontsevich
What's being counted	honest subvarieties	parametrizations up to isomorphism
Moduli space	Severi varieties	Moduli of stable maps
Incidence condition	Loci in the moduli space	Marked points on stable maps
Key technique	Localization	Recursive structure on the boundary

 $[\]leadsto$ Different compactifications of the smooth locus.

Slogan. Slogan: Stable stuff has *finite automorphisms*.

- Stable rational curves have NO (non-trivial) automorphisms, so we get rid of ambiguity of parametrizations.
- Get a fine moduli space with a universal family.
- In general, still get a coarse moduli space.

[→] Kontsevich's method does not require a full understanding of the Chow ring of the moduli space.

2.2 Stable Curves

Definition 2.1. An *n*-pointed smooth rational curve

$$(C, p_1, \ldots, p_n)$$

is a projective smooth rational curve C equipped with a choice of n distinct points $p_1, \ldots, p_n \in C$, called the marks.

An isomorphism between two *n*-pointed rational curves

$$\varphi: (C, p_1, \ldots, p_n) \xrightarrow{\sim} (C', p'_1, \ldots, p'_n)$$

is an isomorphism $\varphi: C \xrightarrow{\sim} C'$ which respects the marks (in the given order), i.e.,

$$\varphi(p_i) = p'_i, \quad i = 1, \ldots, n$$

Proposition 2.2. For $n \ge 3$, there is a fine moduli space $M_{0,n}$ for **n-pointed smooth** rational curves up to isomorphism.

Example 2.3. n = 3. Classical fact: 2 + 1 = 3 points uniquely determines a projective transformation over \mathbb{P}^1 . Thus,

$$(C, p_1, p_2, p_3) \mapsto (\mathbb{P}^1, 0, 1, \infty)$$

$$\rightsquigarrow M_{0,3} \cong \text{pt.}$$

Example 2.4. n = 4.

$$(C, p_1, p_2, p_3, p_4) \mapsto (\mathbb{P}^1, 0, 1, \infty, \tilde{p}_4)$$

 $\rightsquigarrow M_{0,4} \cong \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

Problem 2.5. Not compact!

→ Needs to introduce degenerations.

Definition 2.6. A **tree** of projective lines is a connected curve such that

- Each irreducible component (*twig*) is isomorphic to a projective line.
- The points of intersection of the components are ordinary double points.
- There are no closed circuits. That is, if a node is removed, the curve becomes disconnected.

The three properties together are equivalent to saying that the curve has arithmetic genus zero.

Definition 2.7. $n \ge 3$. A **stable** n**-pointed rational curve** is a tree C of projective lines, with n distinct marks which are smooth points of C, such that every twig has at least three special points (either marks or nodes).

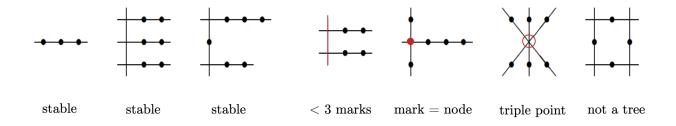


Figure 2.8: Examples and non-examples of stable curves.

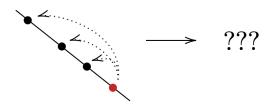
Remark 2.9. Stable → no automorphisms.

Theorem 2.10. (Knudsen) For each $n \ge 3$, there is a fine moduli space $\overline{M}_{0,n}$ for stable n-pointed rational curves. It is a projective variety and contains the subvariety $M_{0,n}$ as a dense open subset.

Example 2.11. $\overline{M}_{0,4}$ is a compactification of $M_{0,4} \cong \mathbb{P}^1 \setminus \{0,1,\infty\}$. In fact,

$$\overline{M}_{0,4} \cong \mathbb{P}^1$$
.

What are the three new degeneracies corresponding to $0, 1, \infty$? In other words, what happens when p_4 approaches $0, 1, \infty$?



Slogan. When you can't tell 2 points apart, blow the thing up!

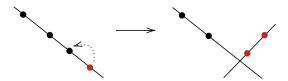


Figure 2.12: The '0', '1', and ' ∞ ' are stable curves with an additional twig.

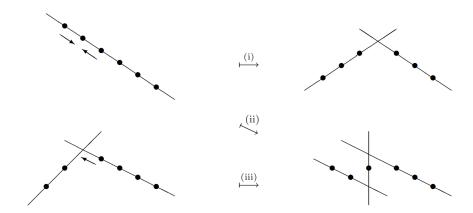


Figure 2.13: Other instances from Kock.

2.3 Stabilization

→ Adding and forgetting marked points may break stability. → Stabilize the new curve by blowing up / down.

Example 2.14. Adding a new mark *q*.

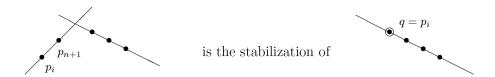


Figure 2.15: Blow up if *q* coincides with a previous mark.

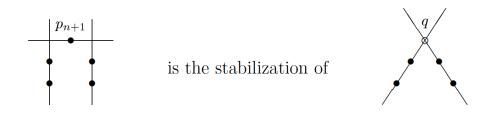


Figure 2.16: Blow up if *q* coincides with a node.

Example 2.17. Forgetting p_{n+1} .

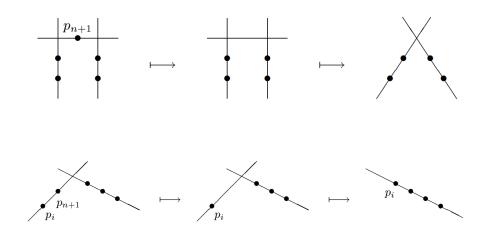


Figure 2.18: Contract the twig with < 3 marked points.

Proposition 2.19. *The map*

$$\pi:\overline{M}_{0,n+1}\to\overline{M}_{0,n}$$

forgetting p_{n+1} is a morphism.

It is actually something more.

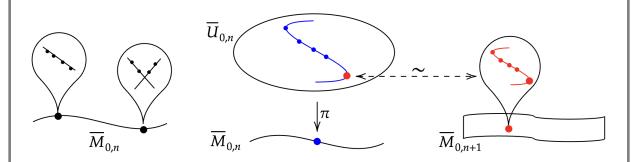
Theorem 2.20. The forgetful morphism

$$\pi:\overline{M}_{0,n+1}\to\overline{M}_{0,n}$$

is the universal family $\overline{U}_{0,n}$ over $\overline{M}_{0,n}$.

Proof

Idea: points in $\overline{U}_{0,n}$ bijectively corresponds to stable (n + 1)-pointed curves.



2.4 Boundary Divisors

Twigs partition marks into disjoint subsets.

The boundary of $\overline{M}_{0,n}$ is stratified by set partitions of marked points, ordered by refinement.

Example 2.21. Stratification for $\overline{M}_{0,6}$. Numbers on the side count different orderings of the 6 marked points.

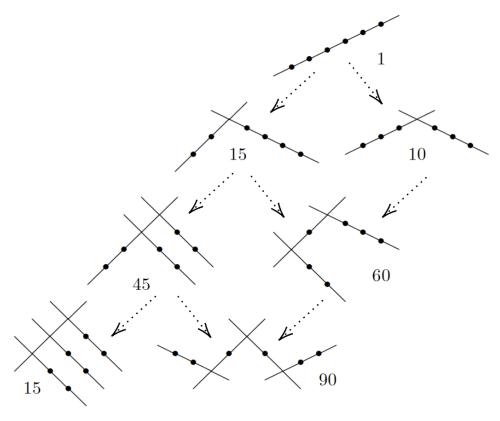


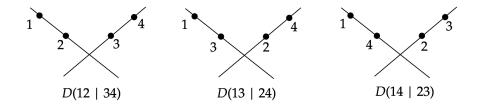
Figure 2.22: The poset structure of $\overline{M}_{0,6}$, cf. Kock

Definition 2.23. Denote by [n] the set of n marks. There is an irreducible **boundary divisor** $D(A \mid B)$ for each partition $[n] = A \sqcup B$ with A, B each having at least 2 elements. \rightsquigarrow Points in $D(A \mid B)$ correspond to curves with two twigs and specified marked points. \rightsquigarrow Intersecting boundary divisors corresponds to taking common refinement of set partitions.

Example 2.24. n = 4. There are three set partitions of [4]:

$$(12\mid 34), (13\mid 24), (14\mid 23)$$

This gives rise to the three boundary divisors of $\overline{M}_{0,4}$:



Recall that $\overline{M}_{0,4} \cong \mathbb{P}^1$, where every two points are linearly equivalent. Therefore,

$$D(12 \mid 34) \sim D(13 \mid 24) \sim D(14 \mid 23) \text{ in } \overline{M}_{0,4}.$$
 (*)

Now, consider the morphism

$$\pi: \overline{M}_{0,n} \to \overline{M}_{0,ijkl}, \quad (C, p_1, \dots, p_n) \mapsto (C, p_i, p_i, p_k, p_l).$$

This is a composition of forgetful maps which remembers any given quadruplet of points labeled i, j, k, l. Pulling back relation (*) along π , we obtain the **fundamental relations** for $\overline{M}_{0,n}$:

Proposition 2.25 (Fundamental relations).

$$\sum_{\substack{i,j\in A\\k,l\in B}}D(A\mid B)=\sum_{\substack{i,k\in A\\j,l\in B}}D(A\mid B)=\sum_{\substack{i,l\in A\\j,k\in B}}D(A\mid B)\quad in\ A^1(\overline{M}_{0,n}).$$

Abbreviating,

$$D(ij \mid kl) = D(ik \mid jl) = D(il \mid kj).$$

(call these sums special boundary divisors.)

In fact, these completely describe the Chow ring:

Theorem 2.26 (Keel). The Chow ring $A(\overline{M}_{0,n})$ is generated by classes of boundary divisors $D(A \mid B)$, with the following relations.

• For two partitions $(A_1 \mid B_1)$ and $(A_2 \mid B_2)$ with no inclusions among A_1, \ldots, B_2 ,

$$[D(A_1 \mid B_1)] \cdot [D(A_2 \mid B_2)] = 0.$$

• The fundamental relations.

Proposition 2.27 (Recursive structure). *There is a canonical isomorphism*

$$D(A \mid B) \simeq \overline{M}_{0,A \cup \{x\}} \times \overline{M}_{0,B \cup \{x\}}$$

for which x is the unique node on a two-twigged curve.

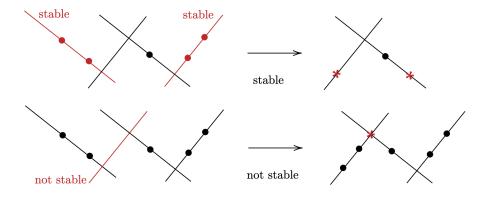
3 Moduli of Stable Maps

3.1 Stable Maps

Definition 3.1. An *n***-pointed map** is a morphism $\mu : C \to \mathbb{P}^r$, where *C* is a tree of projective lines with *n* distinct marks which are smooth points of *C*.

An *n*-pointed stable map $\mu: C \to \mathbb{P}^r$ is such a map for which any twig mapped to a point is stable as a pointed curve.

Example 3.2. The second map contracts a \mathbb{P}^1 with only two marks, so not stable.



stable map \iff finite automorphisms

Theorem 3.3. There exists a coarse moduli space $\overline{M}_{0,n}(\mathbb{P}^r,d)$ parametrizing isomorphism classes of stable n-pointed maps of degree d to \mathbb{P}^r .

 $\overline{M}_{0,n}\left(\mathbb{P}^r,d\right)$ is a projective normal irreducible variety, locally isomorphic to a quotient of a smooth variety (moduli of parametrizations) by a finite group action. There exists a fine moduli space $M_{0,n}(\mathbb{P}^r,d)$ for stable maps with trivial automorphisms, and it a dense open set of $\overline{M}_{0,n}(\mathbb{P}^r,d)$.

Proposition 3.4. The dimension of $\overline{M}_{0,n}(\mathbb{P}^r,d)$ is (r+1)(d+1)-1-3+n.

3.2 Forgetful Maps and Evaluation Maps

Two kinds of forgetful maps:

• Forget points:

$$\overline{M}_{0,n+1}(\mathbb{P}^r,d) \to \overline{M}_{0,n}(\mathbb{P}^r,d).$$

• $(n \ge 4)$ Forget that you were a map:

$$\overline{M}_{0,n}(\mathbb{P}^r,d) \to \overline{M}_{0,n}.$$

 \rightsquigarrow Just take the source tree of lines with n marks and stabilize.

A new species: evaluation maps

$$\operatorname{ev}_i: \overline{M}_{0,n}(\mathbb{P}^r,d) \to \mathbb{P}^r, \qquad (\mu:(C,p_1,\ldots,p_n) \to \mathbb{P}^r) \mapsto \mu(p_i).$$

Proposition 3.5. All evaluation maps and most forgetful maps $(n \ge 4)$ are flat.

"Total evaluation map"

$$\underline{\operatorname{ev}}: \overline{M}_{0,n}(\mathbb{P}^r,d) \to \mathbb{P}^r \times \cdots \times \mathbb{P}^r, \qquad \mu \mapsto (\mu(p_1),\ldots,\mu(p_n)).$$

Example 3.6. (Flat pullbacks.) Let D be a divisor on \mathbb{P}^r . Then, the pullback of D along ev_i is a divisor on $\overline{M}_{0,n}(\mathbb{P}^r,d)$.

Let V be a subvariety of \mathbb{P}^r . If $\pi:\overline{M}_{0,n+1}(\mathbb{P}^r,d)\to\overline{M}_{0,n}(\mathbb{P}^r,d)$ is the map forgetting p_{n+1} , then

$$\mathrm{inc}(V) := \pi \circ \mathrm{ev}^{-1}(V)$$

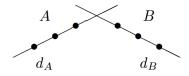
is the locus in $\overline{M}_{0,n}(\mathbb{P}^r,d)$ consisting of stable maps whose image is *incident to V*.

3.3 Boundary Divisors

→ Set partitions get upgraded to weighted partitions.

Definition 3.7. A *d*-weighted partition of [n] consists of the data $A \cup B = [n]$, $d_A + d_B = d$, (where $\#A \ge 2$ if $d_A = 0$, and $\#B \ge 2$ if $d_B = 0$).

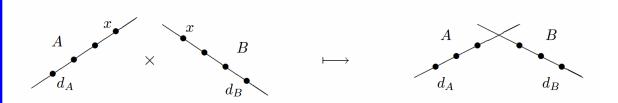
For each *d*-weighted partition, there exists an irreducible **boundary divisor** $D(A, B; d_A, d_B)$.



Proposition 3.8 (Recursive structure). There is a gluing isomorphism

$$D(A,B;d_A,d_B) \cong \overline{M}_{0,A \cup \{x\}} \left(\mathbb{P}^r,d_A\right) \times_{\mathbb{P}^r} \overline{M}_{0,B \cup \{x\}} \left(\mathbb{P}^r,d_B\right)$$

where the fiber product is taken over the evaluation maps at the node x.



Proposition 3.9 (Fundamental relations). *Pulling back along forgetful maps* $\overline{M}_{0,n}(\mathbb{P}^r,d) \to \overline{M}_{0,n} \to \overline{M}_{0,4}$, we once again obtain

$$\sum_{\substack{A \cup B = [n] \\ i,j \in A \\ k,l \in B \\ d_A + d_B = d}} D\left(A,B;d_A,d_B\right) = \sum_{\substack{A \cup B = [n] \\ i,k \in A \\ j,l \in B \\ d_A + d_B = d}} D\left(A,B;d_A,d_B\right) = \sum_{\substack{A \cup B = [n] \\ i,l \in A \\ j,k \in B \\ d_A + d_B = d}} D\left(A,B;d_A,d_B\right).$$

In terms of special boundary divisors, we once again have

$$D(ij \mid kl) = D(ik \mid jl) = D(il \mid kj).$$

Remark 3.10. A few cute examples.

- $\overline{M}_{0,0}(\mathbb{P}^r,1) \cong \mathbb{G}(1,r)$.
- $\overline{M}_{0,1}(\mathbb{P}^r,1) \cong \mathbb{P}(U)$ for the universal bundle of $\mathbb{G}(1,r)$.
- $\overline{M}_{0,2}(\mathbb{P}^r,1)$ is isomorphic to $\mathbb{P}^r \times \mathbb{P}^r$ blown up along the diagonal.
- $\overline{M}_{0,n}(\mathbb{P}^r,0)\cong \overline{M}_{0,n}\times \mathbb{P}^r$.
- $\overline{M}_{0,0}(\mathbb{P}^r,2)$ is isomorphic to the space of *complete conics*.

4 Gromov-Witten Invariants and Kontsevich's Recursive Formula

4.1 Kontsevich's Formula

Theorem 4.1 (Kontsenich's Formula). Let N_d be the number of rational curves of degree d passing through 3d - 1 general points in the plane. Then the following recursive relation holds:

$$N_d + \sum_{\substack{d_A + d_B = d \\ d_A \geqslant 1, d_B \geqslant 1}} \binom{3d - 4}{3d_A - 1} d_A^2 N_{d_A} \cdot N_{d_B} \cdot d_A d_B = \sum_{\substack{d_A + d_B = d \\ d_A \geqslant 1, d_B \geqslant 1}} \binom{3d - 4}{3d_A - 2} d_A N_{d_A} \cdot d_B N_{d_B} \cdot d_A d_B$$

Since we know $N_1 = 1$, the formula allows for the computation of any N_d .

Proof

A consequence of the **fundamental relation**

$$D(qr \mid st) = D(qs \mid rt).$$

To get numbers out of a linear equivalence of divisors, we hope to intersect both sides with some *curve*.

Take n = 3d marked points, $d \ge 2$. Label the marked points in a convenient way:

$$\{1,2,\ldots,n-4,q,r,s,t\}.$$

Take general lines ℓ_q , ℓ_r and n-2 other general points $p_1, \ldots, p_{n-4}, p_s, p_t$. In $\overline{M}_{0,n}\left(\mathbb{P}^2,d\right)$, consider the incidence locus

$$Y := ev_1^{-1}(p_1) \cap \cdots \cap ev_{n-4}^{-1}(p_{n-4}) \cap ev_q^{-1}(\ell_q) \cap ev_r^{-1}(\ell_r) \cap ev_s^{-1}(p_s) \cap ev_t^{-1}(p_t).$$

Namely, Y is the locus where the image of the stable pointed map is incident to all given n-2 points and 2 lines. By Bertini, Y is a non-singular curve contained in the

automorphism-free locus $M_{0,n}$ (\mathbb{P}^2 , d), intersecting boundary divisors transversally at general points on the boundary (i.e. no excess intersections).

 \rightsquigarrow $Y \cap D(A, B; d_A, d_B)$ should be a finite set of points!

We now claim that the formula follows from

$$#Y \cap D(qr \mid st) = #Y \cap D(qs \mid rt).$$

First,

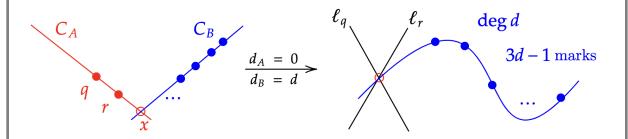
$$D(qr \mid st) = \sum_{q,r \in A, s, t \in B, d_A + d_B = d} D(A, B; d_A, d_B).$$

Examine terms in this sum:

Special Case I
$$d_A = 0$$
; $d_B = d$.

- $Y \cap D(A, B; d_A, d_B) \neq \emptyset$ iff $A = \{q, r\}$.
- $d_A = 0$ means the A-twig C_A gets contracted to the node x, which then has to land on the point of intersection $\ell_q \cap \ell_r$.
- $B = \text{ everything but } q, r \text{ means the } B \text{-twig } C_B \text{ gets } 3d 2 \text{ marked points.}$
- In total, the image is a degree d rational curve with 3d 2 + node = 3d 1 marked points!

$$\rightsquigarrow$$
 # $Y \cap D(\{q,r\}, \text{ the rest }; 0,d) = N_d$



Special Case II $d_A = d$; $d_B = 0$.

→ Empty intersection.

Everything else $1 \le d_A \le n-1$.

- $Y \cap D(A, B; d_A, d_B) \neq \emptyset$ iff $|A| = 3d_A + 1$.
- Number of set partitions $(A \mid B)$ s.t. $|A| = 3d_A + 1$, $q, r \in A$, $s, t \in B$:

$$\binom{3d-4}{3d_A-1}$$
.

• **Recursive structure:** Image of C_A is a $(3d_A - 1)$ -pointed rational curve of degree d_A . Image of C_B is a $(3d_B - 1)$ -pointed rational curve of degree d_B .

$$\rightsquigarrow$$
 Factor of $N_{d_A}N_{d_B}$.

• Image of q, r lands on intersections of the image of C_A with ℓ_q , ℓ_r , respectively.

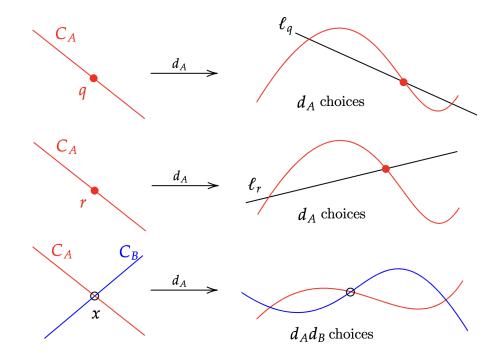
$$\rightsquigarrow$$
 Factor of d_A^2 .

• Image of the node $x = C_A \cap C_B$ lands on intersections of images of C_A , C_B .

$$\rightsquigarrow$$
 Factor of $d_A d_B$.

• In total for each such divisor,

$$\#Y \cap D(A, B; d_A, d_B) = d_A^3 d_B N_{d_A} N_{d_B} \binom{3d-4}{3d_A-1}.$$



Thus,

LHS =
$$N_d + \sum_{d_A + d_B = d, d_A \geqslant 1, d_B \geqslant 1} N_{d_A} N_{d_B} d_A^3 d_B \binom{3d - 4}{3d_A - 1}.$$

Next,

$$D(qs \mid rt) = \sum_{q,s \in A, r, t \in B, d_A + d_B = d} D(A, B; d_A, d_B).$$

Examine terms in this sum:

Special Case I
$$d_A = 0$$
; $d_B = d$.

 \leadsto Empty intersection.

Special Case II
$$d_A = d; d_B = 0$$
.

 \rightsquigarrow Empty intersection.

Everything else
$$1 \le d_A \le n - 1$$
.

$$\#Y \cap D(A, B; d_A, d_B) = N_{d_A} N_{d_B} d_A^2 d_B^2 \binom{3d-4}{3d_A-2}.$$

So

RHS =
$$\sum_{d_A + d_B = d, d_A \ge 1, d_B \ge 1} N_{d_A} N_{d_B} d_A^2 d_B^2 \binom{3d - 4}{3d_A - 2}.$$

All in all,

$$N_{d} + \sum_{d_{A}+d_{B}=d,d_{A}\geqslant 1,d_{B}\geqslant 1} N_{d_{A}} N_{d_{B}} d_{A}^{3} d_{B} \binom{3d-4}{3d_{A}-1}$$

$$= \sum_{d_{A}+d_{B}=d,d_{A}\geqslant 1,d_{B}\geqslant 1} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}^{2} \binom{3d-4}{3d_{A}-2}.$$

4.2 Gromov-Witten Invariants

Let X be a *convex* variety (i.e. having enough lines: \mathbb{P}^r , Grassmannians, the Flag variety, etc., and products thereof).

- \mathcal{T}_X globally generated.
- A(X) has a natural basis consisting of Schubert classes.

Fix an effective class $\beta \in A_1(X)$. We can consider the moduli space of stable n-pointed maps $\mu : C \to X$ whose image $[\mu(C)] = \beta$:

$$\overline{M}_{0,n}(X,\beta)$$
.

We may similarly integrate pullback classes of the appropriate codimension and expect the result to be a number.

Definition 4.2. Let $\gamma_1, \ldots, \gamma_n \in A^{\bullet}(X)$ be classes such that

$$\sum \operatorname{codim}(\gamma_i) = \dim X + \int_{\beta} c_1(T_X) + n - 3.$$

Then, the **Gromov-Witten invariant** is defined as

$$I_{\beta}\left(\gamma_{1}\cdots\gamma_{n}\right)=\int_{\overline{M}_{0,n}\left(X,\beta\right)}\operatorname{ev}_{1}^{*}\left(\gamma_{1}\right)\cup\cdots\cup\operatorname{ev}_{n}^{*}\left(\gamma_{n}\right).$$

This is an integral over the (virtual) fundamental class $\overline{M}_{0,n}(X,\beta)$. In the case that γ_i all correspond to honest subvarieties Γ_i , the Gromov-Witten invariant then counts the number of curves in the cycle class β which are incident to all Γ_i .

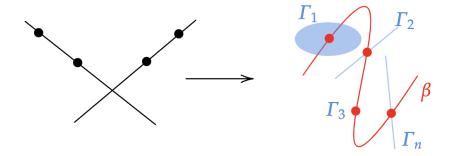


Figure 4.3: Number of curves in the class β incident to $\Gamma_1, \ldots, \Gamma_n$.

For $X = \mathbb{P}^r$ (or Pic $X \cong \mathbb{Z}$), by I_d and $\overline{M}_{0,n}(\mathbb{P}^r,d)$ we mean $\beta = d \cdot h^{r-1}$ (d times class of a straight line).

Example 4.4. For \mathbb{P}^2 , we have

$$I_d(\underbrace{h^2 \cdots h^2}_{3d-1 \text{ factors}}) = N_d$$

the number of rational curves of degree d which pass through 3d-1 general points.

Example 4.5. In \mathbb{P}^3 , the invariant $I_1(h^2 \cdot h^2 \cdot h^2 \cdot h^2)$ is the number of lines incident to four given lines.

Example 4.6. For \mathbb{P}^3 , the number

$$I_3(\underbrace{h^2\cdots h^2}_6\cdot\underbrace{h^3\cdots h^3}_3)$$

is the number of twisted cubics meeting 6 lines and 3 points. It is computed in the 21-dimensional space $\overline{M}_{0,9}\left(\mathbb{P}^3,3\right)$.

Example 4.7. ***27 lines example?

4.3 The Reconstruction Theorem

Proposition 4.8. Useful properties of Gromov-Witten invariants on \mathbb{P}^r :

• (Mapping to a point) The only non-zero Gromov-Witten invariants with d=0 are those with 3 marks and $\sum \operatorname{codim} \gamma_i = r$. In this case we have

$$I_0\left(\gamma_1\cdot\gamma_2\cdot\gamma_3
ight)=\int_{\mathbb{P}^r}\gamma_1\cup\gamma_2\cup\gamma_3.$$

• (Two-pointed invariants) The only non-zero Gromov-Witten invariants with less than three marks are

$$I_1\left(h^r\cdot h^r\right)=1,$$

i.e. there is a unique line passing through two distinct points.

• (Divisor equation) Suppose d > 0 and that one of the classes is the hyperplane class, say $\gamma_{n+1} = h$. Then

$$I_d(\gamma_1 \cdots \gamma_n \cdot h) = I_d(\gamma_1 \cdots \gamma_n) \cdot d$$

The recursive structure of boundary divisors, namely

$$D\left(A,B;d_{A},d_{B}\right)\simeq\overline{M}_{0,A\cup\{x\}}\left(\mathbb{P}^{r},d_{A}\right)\times_{\mathbb{P}^{r}}\overline{M}_{0,B\cup\{x\}}\left(\mathbb{P}^{r},d_{B}\right)$$

acquires the following new guise:

Lemma 4.9 (Splitting lemma). For a boundary divisor D, let $\alpha: D \hookrightarrow \overline{M}$ be the natural inclusion, and let $\iota: D \cong (\operatorname{ev}_{x_A} \times \operatorname{ev}_{x_B})^{-1}(\Delta) \hookrightarrow \overline{M}_A \times \overline{M}_B$ be the inclusion as the inverse image of the diagonal. Then for any classes $\gamma_1, \ldots, \gamma_n \in A^*(\mathbb{P}^r)$ the following identity holds in $A^*(\overline{M}_A \times \overline{M}_B)$:

$$\iota_*\alpha^*\underline{\mathrm{ev}}^*(\underline{\gamma}) = \sum_{e+f=r} \left(\prod_{a \in A} \mathrm{ev}_a^* \left(\gamma_a \right) \cdot \mathrm{ev}_{\chi_A}^* \left(h^e \right) \right) \times \left(\prod_{b \in B} \mathrm{ev}_b^* \left(\gamma_b \right) \cdot \mathrm{ev}_{\chi_B}^* \left(h^f \right) \right)$$

Corollary 4.10 (A general recursive formula).

$$\int_{D} \operatorname{ev}_{1}^{*} (\gamma_{1}) \cup \cdots \cup \operatorname{ev}_{n}^{*} (\gamma_{n}) = \sum_{e+f=r} I_{d_{A}} \left(\prod_{a \in A} \gamma_{a} \cdot h^{e} \right) \cdot I_{d_{B}} \left(\prod_{b \in B} \gamma_{b} \cdot h^{f} \right).$$

All Gromov-Witten invariants for \mathbb{P}^r can similarly be reconstructed from these recursions, knowing just a single initial condition.

Theorem 4.11 (Reconstruction theorem for \mathbb{P}^r). (Kontsevich-Manin and Ruan-Tian.) All the Gromov-Witten invariants for \mathbb{P}^r can be computed recursively, and the only necessary initial value is $I_1(h^r \cdot h^r) = 1$, the number of lines through two points.

d	N_d
1	1
2	1
3	12
4	620
5	87304
6	26312976
7	14616808192

First few invariants for \mathbb{P}^2 .

5 Quantum Cohomology

We have some huge recursions and numbers that *blows up*. We should try organizing them into generating series.

5.1 An Interlude on Generating Functions

Definition 5.1. Let $\{N_k\}_{k=0}^{\infty}$ be a sequence of numbers. The **exponential generating** function for N_k is

$$F(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} N_k.$$

Slogan.

unordered objects → ordinary generating functions labeled objects → exponential generating functions

Example 5.2. The derivative of an exponential generating function is a shift in its indices:

$$\frac{d}{dx}F = \sum_{k=1}^{\infty} k \frac{x^{k-1}}{k!} N_k = \sum_{k=0}^{\infty} \frac{x^k}{k!} N_{k+1}.$$

Example 5.3. Fibonacci numbers.

• Initial conditions:

$$N_0 = N_1 = 1$$
.

• Recursion:

$$N_{k+2} = N_{k+1} + N_k.$$

• In terms of the generating function:

$$F_{xx} = F_x + F$$
.

Slogan.

Recursive formulae \iff PDE in generating functions

5.2 Quantum Cohomology and Associativity of the Quantum Product

 \rightsquigarrow Multi indicies: For $\mathbf{x} = (x_0, \dots, x_r)$ and $\mathbf{a} = (a_0, \dots, a_r)$, and define

$$\mathbf{x}^{\mathbf{a}} = x_0^{a_0} \cdots x_r^{a_r}$$
 and $\mathbf{a}! = a_0! \cdots a_r!$

- \rightsquigarrow By the '•' in $(h^i)^{\bullet a_i}$, we mean take i many times the class h^i , which is NOT the same as taking the their product in the Chow ring.
 - \rightsquigarrow Short hand for I_d : write

$$I(\gamma_1 \cdots \gamma_n) := \sum_{d=0}^{\infty} I_d(\gamma_1 \cdots \gamma_n),$$

since at most one of the terms is non-zero, namely when

$$d = \frac{\sum \operatorname{codim} \gamma_i - r - n + 3}{r + 1}.$$

Definition 5.4. The **Gromov-Witten potential** for classes $(h^0)^{\bullet a_0}, \ldots, (h^r)^{\bullet a_r} \in A(\mathbb{P}^r)$ is the *multi-indexed exponential generating function*

$$\Phi(\mathbf{x}) := \sum_{\mathbf{a}} \frac{\mathbf{x}^{\mathbf{a}}}{\mathbf{a}!} I(\mathbf{h}^{\mathbf{a}})$$

$$= \sum_{a_0, \dots, a_r} \frac{x_0^{a_0} \cdots x_r^{a_r}}{a_0! \cdots a_r!} I\left(\left(h^0\right)^{\bullet a_0} \left(h^1\right)^{\bullet a_1} \cdots \left(h^r\right)^{\bullet a_r}\right).$$

Definition 5.5. The **partial derivatives** of Φ are the usual formal partials of a series:

$$\Phi_{ijk} = \sum_{\mathbf{a}} \frac{\mathbf{x}^{\mathbf{a}}}{\mathbf{a}!} I\left(\mathbf{h}^{\mathbf{a}} \cdot h^{i} \cdot h^{i} \cdot h^{k}\right).$$

Definition 5.6. The quantum product for $A^{\bullet}(\mathbb{P}^r)$ is defined by

$$h^i * h^j := \sum_{0 \leqslant k \leqslant r} \Phi_{ijk} h^{r-k}.$$

Slogan. Φ_{ijk} are the structural constants for the quantum product.

Note that the quantum product now has extra parameters x^a in the Φ_{ijk} .

Definition 5.7. The (big) **quantum cohomology ring** for \mathbb{P}^r is $A^{\bullet}(\mathbb{P}^r) \otimes_{\mathbb{Z}} \mathbb{Q}[[x]]$. The product structure is obtained by extending the quantum product $\mathbb{Q}[[x]]$ -linearly.

The quantum product is obviously commutative. Associativity will be established later.

Example 5.8. (Recovering the usual intersection product.) If one of the three indices of Φ_{ijk} is zero, say i = 0, then

$$\Phi_{0jk} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{d \geq 0} I_d \left(\gamma^{\bullet n} \cdot h^0 \cdot h^j \cdot h^k \right)$$
$$= I_0 \left(h^0 \cdot h^j \cdot h^k \right)$$
$$= \int_{\mathbb{P}^r} h^j \cup h^k.$$

Example 5.9. The fundamental class h^0 is the identity for *.

Theorem 5.10. The quantum product * is associative.

Proof

(Sketch) We want to show

$$\left(h^{i}*h^{j}\right)*h^{k}=h^{i}*\left(h^{j}*h^{k}\right).$$

Expanding, this is equivalent to

$$\sum_{e+f=r} \sum_{l+m=r} \Phi_{ije} \Phi_{fkl} h^m = \sum_{e+f=r} \sum_{l+m=r} \Phi_{jke} \Phi_{fil} h^m.$$

Since the h^i are independent, we just need to equate coefficients in front of each

degree:

$$\sum_{e+f=r}\Phi_{ije}\Phi_{fkl}=\sum_{e+f=r}\Phi_{jke}\Phi_{fil}.$$

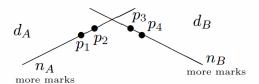
These are the **WDVV equations** (Witten-Dijkgraaf-Verlinde-Verlinde). Further expanding (abbreviating irrelevant classes to γ), we get

$$\begin{split} &\sum_{e+f=r} \sum_{n_A+n_B=n} \frac{n!}{n_A! n_B!} I\left(\gamma^{\bullet n_A} \cdot h^i \cdot h^j \cdot h^e\right) I\left(\gamma^{\bullet n_B} \cdot h^f \cdot h^k \cdot h^l\right) \\ &= \sum_{e+f=r} \sum_{n_A+n_B=n} \frac{n!}{n_A! n_B!} I\left(\gamma^{\bullet n_A} \cdot h^j \cdot h^k \cdot h^e\right) I\left(\gamma^{\bullet n_B} \cdot h^f \cdot h^i \cdot h^l\right). \end{split}$$

This again follows from the fundamental relation

$$D(p_1p_2 | p_3p_4) \equiv D(p_2p_3 | p_1p_4)$$

on the moduli space $\overline{M}_{0,n+4}(\mathbb{P}^r,d)$, via the splitting lemma:



5.3 Kontsevich's Formula via Associativity

The only non-zero invariants for I_0 are the 3-pointed invariants $I_0(h^i \cdot h^j \cdot h^k) = \int_{\mathbb{P}^r} h^i \cup h^j \cup h^k$. The curve-counting information is contained in the d > 0 part.

Let $I_+ := \sum_{d>0} I_d$. Then, we can decompose the full Gromov-Witten potential into d=0 and d>0 parts.

Definition 5.11.

$$\Phi=\Phi^{cl}+\Gamma$$

where

$$\Phi^{\text{cl}} = \sum_{i,j,k} \frac{x_i x_j x_k}{3!} I_0 \left(h^i \cdot h^j \cdot h^k \right)$$

is called the classical potential, and

$$\Gamma = \sum_{n=0}^{\infty} \frac{1}{n!} I_{+} \left(\gamma^{\bullet n} \right)$$

is the quantum potential.

Similarly, the quantum product decomposes into a classical and a quantum part.

$$h^{i} * h^{j} = \sum_{0 \leq k \leq r} \left(I_{0} \left(h^{i} \cdot h^{j} \cdot h^{k} \right) + \Gamma_{ijk} \right) h^{r-k}$$
$$= h^{i} \cup h^{j} + \sum_{0 \leq k \leq r} \Gamma_{ijk} h^{r-k}.$$

(Holds for more general *X*.)

Slogan. The quantum product is a **deformation** of the classical intersection product.

Theorem 5.12. Associativity of the quantum product on \mathbb{P}^2 implies Kontsevich's recursive formula.

Proof

For \mathbb{P}^2 , we have

$$h^{1} * h^{1} = h^{2} + \Gamma_{111}h^{1} + \Gamma_{112}h^{0}$$

 $h^{1} * h^{2} = \Gamma_{121}h^{1} + \Gamma_{122}h^{0}$
 $h^{2} * h^{2} = \Gamma_{221}h^{1} + \Gamma_{222}h^{0}$

The associativity

$$(h^1 * h^1) * h^2 = h^1 * (h^1 * h^2)$$

expands as

$$\Gamma_{221}h^1 + \Gamma_{222}h^0 + \Gamma_{111}\left(\Gamma_{121}h^1 + \Gamma_{122}h^0\right) + \Gamma_{112}h^2 = \Gamma_{121}\left(h^2 + \Gamma_{111}h^1 + \Gamma_{112}h^0\right) + \Gamma_{122}h^1.$$

Equating coefficients of h^0 , we obtain

$$\Gamma_{222} + \Gamma_{111}\Gamma_{122} = \Gamma_{112}\Gamma_{112}$$
.

Expanding,

$$I_{+}\left(\left(h^{2}\right)^{\bullet n}h^{2}h^{2}h^{2}\right) + \sum_{n_{A}+n_{B}=n}\frac{n!}{n_{A}!n_{B}!}I_{+}\left(\left(h^{2}\right)^{\bullet n_{A}}h^{1}h^{1}h^{1}\right)I_{+}\left(\left(h^{2}\right)^{\bullet n_{B}}h^{1}h^{2}h^{2}\right)$$

$$= \sum_{n_{A}+n_{B}=n}\frac{n!}{n_{A}!n_{B}!}I_{+}\left(\left(h^{2}\right)^{\bullet n_{A}}h^{1}h^{1}h^{2}\right)I_{+}\left(\left(h^{2}\right)^{\bullet n_{B}}h^{1}h^{1}h^{2}\right).$$

Interpreting each I_+ term enumeratively, this is nothing else but Kontsevich's formula!

$$\begin{split} N_d + \sum_{d_A + d_B = d} \frac{(3d - 4)!}{(3d_A - 1)! (3d_B - 3)!} d_A^3 N_{d_A} d_B N_{d_B} \\ = \sum_{d_A + d_B = d} \frac{(3d - 4)!}{(3d_A - 2)! (3d_B - 2)!} d_A^2 N_{d_A} d_B^2 N_{d_B}. \end{split}$$

5.4 The Small Quantum Cohomology, Algebraic Combinatorics, and More

→ truncated ring with only the *three-pointed* invariants as structural constants.

$$\Phi_{ijk} = \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{d>0} d^n \cdot I_d \left(h^i \cdot h^j \cdot h^k \right)$$
$$= I_0 \left(h^i \cdot h^j \cdot h^k \right) + q \cdot I_1 \left(h^i \cdot h^j \cdot h^k \right) \quad \text{for } q := \exp(x).$$

→ the *original* definition of the quantum cohomology.

→ small quantum product:

$$h^{i} * h^{j} = \begin{cases} h^{i+j} & \text{for } i+j \leq r \\ qh^{i+j-r-1} & \text{for } r < i+j \leq 2r \end{cases}$$

 \rightsquigarrow small quantum cohomology for \mathbb{P}^r :

$$\mathbb{Z}[h,q]/(h^{r+1}-q)$$
 "deformation of the cohomology ring by the q parameter."

 \leadsto "quantum Schubert calculus"

Classically:

Example 5.13. (Pieri rule)

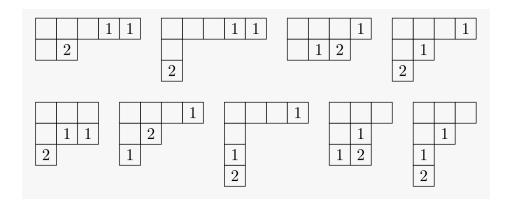
$$(\sigma_b \cdot \sigma_a) = \sum_{\substack{|c| = |a| + b \\ a_i \leqslant c_i \leqslant a_{i-1} \forall i}} \sigma_c$$

Example 5.14. (Giambelli's formula)

$$\sigma_{a_{1},a_{2},...,a_{k}} = \begin{vmatrix} \sigma_{a_{1}} & \sigma_{a_{1}+1} & \sigma_{a_{1}+2} & \cdots & \sigma_{a_{1}+k-1} \\ \sigma_{a_{2}-1} & \sigma_{a_{2}} & \sigma_{a_{2}+1} & \cdots & \sigma_{a_{2}+k-2} \\ \sigma_{a_{3}-2} & \sigma_{a_{3}-1} & \sigma_{a_{3}} & \cdots & \sigma_{a_{3}+k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{a_{k}-k+1} & \sigma_{a_{k}-k+2} & \sigma_{a_{k}-k+3} & \cdots & \sigma_{a_{k}} \end{vmatrix}$$

Example 5.15. (Littlewood-Richardson coefficients) The structural constants $c_{\lambda\mu}^{\nu}$ equals the number of skew semistandard Young tableaux of shape λ/μ and filling ν whose reverse row word is ballot.

$$s_{31}s_{21} = s_{52} + s_{511} + s_{43} + 2s_{421} + s_{331} + s_{4111} + s_{322} + s_{3211}$$



→ Postnikov (2003): Defined *toric SSYT* and *toric Schur polynomials* and formulated quantum Pieri rule and quantum Kostka numbers in terms of those. Quantum Giambelli formula is the same as the classical formula.

Figure 5. A semistandard toric tableau of shape $\lambda/d/\mu$

The quantum Littlewood-Richardson rule for tableaux is still wide open till this date.

→ Knutson-Tao honeycomb puzzles for equivariant quantum cohomology.

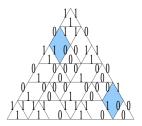


FIGURE 4. A puzzle with two equivariant pieces, which are shaded. The left equivariant piece has weight y_4-y_1 , the right y_5-y_4 , so this puzzle contributes $(y_4-y_1)(y_5-y_4)$ to the calculation of $c_{100101,101010}^{110100}$.

Figure 5.16: An equivariant Knutson-Tao puzzle in the original paper.

- → Partial flag varieties, other types (B, C, ...)
- → Jim Bryan's work on Banana manifolds and modular forms.

Useful references:

- (Bertiger 2018) Equivariant Quantum Cohomology of the Grassmannian via the Rim Hook Rule. https://arxiv.org/abs/1403.6218
- (Mihalcea 2004) Equivariant Quantum Schubert Calculus. https://arxiv.org/abs/math/0406066
- (Postnikov 2002) Affine Approach to Quantum Schubert Calculus. https://arxiv. org/abs/math/0205165

- (Bertiger 2022) An Equivariant Quantum Pieri Rule for the Grassmannian on Cylindric Shapes. https://arxiv.org/abs/2010.15395
- (Bryan and Pietromonaco 2024) The Enumerative Geometry and Arithmetic of Banana Nano-Manifolds. https://arxiv.org/abs/2405.04701

Thank you for your attention!