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1 How many degree d rational curves pass through 3d ´ 1

general points in the projective plane?

A rational plane curve of degree d is parametrized by an embedding

P1
Ñ P2, ps : tq ÞÑ p f ps, tq : gps, tq : hps, tqq

where f , g, h are homogeneous of degree d, each having the form

a0sdt0
` a1sd´1t1

` ¨ ¨ ¨ ` s0td.

Let’s count dimensions. Modding out scalars:

3pd ` 1q ´ 1 “ 3d ` 2.

Modding out reparametrizations by PGL3:

3pd ` 1q ´ 1 ´ 3 “ 3d ´ 1.

Therefore, we expect the locus of degree d rational plane curves passing through 3d ´ 1

general points to be zero-dimensional.

Problem 1.1. How many degree d rational curves pass

through 3d ´ 1 general points in the projective plane?
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Call this number Nd.

Example 1.2. Two points determine a unique line.

N1 “ 1

Example 1.3. 5 points determine a unique conic.

N2 “ 1

Example 1.4. Steiner 1848:

N3 “ 12

Example 1.5. Zeuthen 1873:

N4 “ 620

Example 1.6. ’80s:

N5 “ 87304

Example 1.7. Kontsevich’s recursive formula 1994:

Nd “
ÿ

dA`dB“d

NdA NdB d2
AdB

ˆ

dB

ˆ

3d ´ 4
3dA ´ 2

˙

´ dA

ˆ

3d ´ 4
3dA ´ 1

˙˙

⇝ Recursive structure on the boundary of M0,3d´1
`

P2, d
˘

.
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Useful references:

• (Kock and Vainsencher 2003) Kontsevish’s Formula for Rational Plane Curves.

http://www.dmat.ufpe.br/~israel/kontsevich.html

• "FP-Notes" (Fulton and Pandharipande 1997) Notes on Stable Maps and Quantum

Cohomology. https://arxiv.org/abs/alg-geom/9608011

• (Abramovich 2006) Lectures on Gromov-Witten Invariants of Orbifolds. https:

//arxiv.org/abs/math/0512372

• (Clader 2024) Curve Counting and Mirror Symmetry. https://www.ams.org/journals/notices/202409/

noti3022/noti3022.html?adat=October%202024&trk=3022&pdfissue=202409&pdffile=rnoti-p1140.pdf&cat=none&type=.html

• (Pandharipande and Thomas 2016) 13/2 Ways of Counting Curves. https://arxiv.org/abs/1111.1552
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2 Moduli of Stable Curves

2.1 Motivation

How is Kontsevich’s method different from the ones before?

Previous Kontsevich

What’s being counted honest subvarieties parametrizations up to isomorphism

Moduli space Severi varieties Moduli of stable maps

Incidence condition Loci in the moduli space Marked points on stable maps

Key technique Localization Recursive structure on the boundary

⇝ Different compactifications of the smooth locus.

⇝ Kontsevich’s method does not require a full understanding of the Chow ring of the

moduli space.

Slogan. Slogan: Stable stuff has finite automorphisms.

• Stable rational curves have NO (non-trivial) automorphisms, so we get rid of

ambiguity of parametrizations.

• Get a fine moduli space with a universal family.

• In general, still get a coarse moduli space.
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2.2 Stable Curves

Definition 2.1. An n-pointed smooth rational curve

pC, p1, . . . , pnq

is a projective smooth rational curve C equipped with a choice of n distinct points

p1, . . . , pn P C, called the marks.

An isomorphism between two n-pointed rational curves

φ : pC, p1, . . . , pnq
„
ÝÑ

`

C1, p1
1, . . . , p1

n
˘

is an isomorphism φ : C „
ÝÑ C1 which respects the marks (in the given order), i.e.,

φ ppiq “ p1
i, i “ 1, . . . , n

Proposition 2.2. For n ě 3, there is a fine moduli space M0,n for n-pointed smooth

rational curves up to isomorphism.

Example 2.3. n “ 3. Classical fact: 2 ` 1 “ 3 points uniquely determines a projective

transformation over P1. Thus,

pC, p1, p2, p3q ÞÑ pP1, 0, 1, 8q

⇝ M0,3 – pt.

Example 2.4. n “ 4.

pC, p1, p2, p3, p4q ÞÑ pP1, 0, 1, 8, p̃4q

⇝ M0,4 – P1
zt0, 1, 8u.

Problem 2.5. Not compact!

⇝ Needs to introduce degenerations.
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Definition 2.6. A tree of projective lines is a connected curve such that

• Each irreducible component (twig) is isomorphic to a projective line.

• The points of intersection of the components are ordinary double points.

• There are no closed circuits. That is, if a node is removed, the curve becomes

disconnected.

The three properties together are equivalent to saying that the curve has arithmetic

genus zero.

Definition 2.7. n ě 3. A stable n-pointed rational curve is a tree C of projective lines,

with n distinct marks which are smooth points of C, such that every twig has at least

three special points (either marks or nodes).

Figure 2.8: Examples and non-examples of stable curves.

Remark 2.9. Stable⇝ no automorphisms.

Theorem 2.10. (Knudsen) For each n ě 3, there is a fine moduli space M0,n for stable

n-pointed rational curves. It is a projective variety and contains the subvariety M0,n as a

dense open subset.
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Example 2.11. M0,4 is a compactification of M0,4 – P1zt0, 1, 8u. In fact,

M0,4 – P1.

What are the three new degeneracies corresponding to 0, 1, 8? In other words, what

happens when p4 approaches 0, 1, 8?

Slogan. When you can’t tell 2 points apart, blow the thing up!

Figure 2.12: The ‘0’, ‘1’, and ‘8’ are stable curves with an additional twig.

Figure 2.13: Other instances from Kock.
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2.3 Stabilization

⇝ Adding and forgetting marked points may break stability. ⇝ Stabilize the new curve

by blowing up / down.

Example 2.14. Adding a new mark q.

Figure 2.15: Blow up if q coincides with a previous mark.

Figure 2.16: Blow up if q coincides with a node.

Example 2.17. Forgetting pn`1.

Figure 2.18: Contract the twig with ă 3 marked points.
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Proposition 2.19. The map

π : M0,n`1 Ñ M0,n

forgetting pn`1 is a morphism.

It is actually something more.

Theorem 2.20. The forgetful morphism

π : M0,n`1 Ñ M0,n

is the universal family U0,n over M0,n.

Proof

Idea: points in U0,n bijectively corresponds to stable pn ` 1q-pointed curves.

■
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2.4 Boundary Divisors

Twigs partition marks into disjoint subsets.

The boundary of M0,n is stratified by set partitions of marked points, ordered by refinement.

Example 2.21. Stratification for M0,6. Numbers on the side count different orderings of

the 6 marked points.

Figure 2.22: The poset structure of M0,6, cf. Kock

Definition 2.23. Denote by rns the set of n marks. There is an irreducible boundary

divisor DpA | Bq for each partition rns “ A \ B with A, B each having at least 2 elements.

⇝ Points in DpA | Bq correspond to curves with two twigs and specified marked points.

⇝ Intersecting boundary divisors corresponds to taking common refinement of set

partitions.

Example 2.24. n “ 4. There are three set partitions of r4s:

p12 | 34q, p13 | 24q, p14 | 23q
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This gives rise to the three boundary divisors of M0,4:

Recall that M0,4 – P1, where every two points are linearly equivalent. Therefore,

Dp12 | 34q „ Dp13 | 24q „ Dp14 | 23q in M0,4. (˚)

Now, consider the morphism

π : M0,n Ñ M0,ijkl, pC, p1, . . . , pnq ÞÑ pC, pi, pj, pk, plq.

This is a composition of forgetful maps which remembers any given quadruplet of points

labeled i, j, k, l. Pulling back relation p˚q along π, we obtain the fundamental relations for

M0,n:

Proposition 2.25 (Fundamental relations).

ÿ

i,jPA
k,lPB

DpA | Bq “
ÿ

i,kPA
j,lPB

DpA | Bq “
ÿ

i,lPA
j,kPB

DpA | Bq in A1
pM0,nq.

Abbreviating,

Dpij | klq “ Dpik | jlq “ Dpil | kjq.

(call these sums special boundary divisors.)

In fact, these completely describe the Chow ring:
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Theorem 2.26 (Keel). The Chow ring ApM0,nq is generated by classes of boundary divisors

DpA | Bq, with the following relations.

• For two partitions pA1 | B1q and pA2 | B2q with no inclusions among A1, . . . , B2,

rDpA1 | B1qs ¨ rDpA2 | B2qs “ 0.

• The fundamental relations.

Proposition 2.27 (Recursive structure). There is a canonical isomorphism

DpA | Bq » M0,AYtxu ˆ M0,BYtxu

for which x is the unique node on a two-twigged curve.
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3 Moduli of Stable Maps

3.1 Stable Maps

Definition 3.1. An n-pointed map is a morphism µ : C Ñ Pr, where C is a tree of

projective lines with n distinct marks which are smooth points of C.

An n-pointed stable map µ : C Ñ Pr is such a map for which
::::
any

::::::
twig

:::::::::
mapped

:::
to

::
a

::::::
point

::
is

:::::::
stable

:::
as

::
a

:::::::::
pointed

:::::::
curve.

Example 3.2. The second map contracts a P1 with only two marks, so not stable.

stable map ðñ finite automorphisms

Theorem 3.3. There exists a coarse moduli space M0,n pPr, dq parametrizing isomorphism

classes of stable n-pointed maps of degree d to Pr.

M0,n pPr, dq is a projective normal irreducible variety, locally isomorphic to a quotient of

a smooth variety (moduli of parametrizations) by a finite group action. There exists a fine

moduli space M0,npPr, dq for stable maps with trivial automorphisms, and it a dense open

set of M0,npPr, dq.

Proposition 3.4. The dimension of M0,npPr, dq is pr ` 1qpd ` 1q ´ 1 ´ 3 ` n.
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3.2 Forgetful Maps and Evaluation Maps

Two kinds of forgetful maps:

• Forget points:

M0,n`1pPr, dq Ñ M0,npPr, dq.

• (n ě 4) Forget that you were a map:

M0,npPr, dq Ñ M0,n.

⇝ Just take the source tree of lines with n marks and stabilize.

A new species: evaluation maps

evi : M0,npPr, dq Ñ Pr, pµ : pC, p1, . . . , pnq Ñ Pr
q ÞÑ µppiq.

Proposition 3.5. All evaluation maps and most forgetful maps (n ě 4) are flat.

“Total evaluation map"

ev : M0,npPr, dq Ñ Pr
ˆ ¨ ¨ ¨ ˆ Pr, µ ÞÑ pµpp1q, . . . , µppnqq.

Example 3.6. (Flat pullbacks.) Let D be a divisor on Pr. Then, the pullback of D along

evi is a divisor on M0,npPr, dq.

Let V be a subvariety of Pr. If π : M0,n`1pPr, dq Ñ M0,npPr, dq is the map forgetting

pn`1, then

incpVq :“ π ˝ ev´1
pVq

is the locus in M0,npPr, dq consisting of stable maps whose image is incident to V.
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3.3 Boundary Divisors

⇝ Set partitions get upgraded to weighted partitions.

Definition 3.7. A d-weighted partition of rns consists of the data A Y B “ rns, dA ` dB “ d,

(where #A ě 2 if dA “ 0, and #B ě 2 if dB “ 0 ).

For each d-weighted partition, there exists an irreducible boundary divisor DpA, B; dA, dBq.

Proposition 3.8 (Recursive structure). There is a gluing isomorphism

DpA, B; dA, dBq – M0,AYtxu pPr, dAq ˆPr M0,BYtxu pPr, dBq

where the fiber product is taken over the evaluation maps at the node x.

Proposition 3.9 (Fundamental relations). Pulling back along forgetful maps

M0,n pPr, dq Ñ M0,n Ñ M0,4, we once again obtain

ÿ

AYB“rns

i,jPA
k,lPB

dA`dB“d

D pA, B; dA, dBq “
ÿ

AYB“rns

i,kPA
j,lPB

dA`dB“d

D pA, B; dA, dBq “
ÿ

AYB“rns

i,lPA
j,kPB

dA`dB“d

D pA, B; dA, dBq .

In terms of special boundary divisors, we once again have

Dpij | klq “ Dpik | jlq “ Dpil | kjq.
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Remark 3.10. A few cute examples.

• M0,0pPr, 1q – Gp1, rq.

• M0,1pPr, 1q – PpUq for the universal bundle of Gp1, rq.

• M0,2pPr, 1q is isomorphic to Pr ˆ Pr blown up along the diagonal.

• M0,npPr, 0q – M0,n ˆ Pr.

• M0,0pPr, 2q is isomorphic to the space of complete conics.

17



4 Gromov-Witten Invariants and Kontsevich’s Recursive

Formula

4.1 Kontsevich’s Formula
Theorem 4.1 (Kontsenich’s Formula). Let Nd be the number of rational curves of degree

d passing through 3d ´ 1 general points in the plane. Then the following recursive relation

holds:

Nd `
ÿ

dA`dB“d
dAě1,dBě1

ˆ

3d ´ 4
3dA ´ 1

˙

d2
ANdA ¨ NdB ¨ dAdB “

ÿ

dA`dB“d
dAě1,dBě1

ˆ

3d ´ 4
3dA ´ 2

˙

dANdA ¨ dBNdB ¨ dAdB

Since we know N1 “ 1, the formula allows for the computation of any Nd.

Proof

A consequence of the fundamental relation

Dpqr | stq “ Dpqs | rtq.

To get numbers out of a linear equivalence of divisors, we hope to intersect both

sides with some
::::::
curve.

:

Take n “ 3d marked points, d ě 2. Label the marked points in a convenient way:

t1, 2, . . . , n ´ 4, q, r, s, tu.

Take general lines ℓq, ℓr and n ´ 2 other general points p1, . . . , pn´4, ps, pt. In

M0,n
`

P2, d
˘

, consider the incidence locus

Y :“ ev´1
1 pp1q X ¨ ¨ ¨ X ev´1

n´4ppn´4q X ev´1
q pℓqq X ev´1

r pℓrq X ev´1
s ppsq X ev´1

t pptq.

Namely, Y is the locus where the image of the stable pointed map is incident to all

given n ´ 2 points and 2 lines. By Bertini, Y is a
:::::::::::::
non-singular

:::::::
curve contained in the
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automorphism-free locus M0,n
`

P2, d
˘

, intersecting boundary divisors transversally

at general points on the boundary (i.e. no excess intersections).

⇝ Y X DpA, B; dA, dBq should be a finite set of points!

We now claim that the formula follows from

#Y X Dpqr | stq “ #Y X Dpqs | rtq.

First,

Dpqr | stq “
ÿ

q,rPA,s,tPB,dA`dB“d

D pA, B; dA, dBq .

Examine terms in this sum:

Special Case I dA “ 0; dB “ d.

• Y X DpA, B; dA, dBq ‰ H iff A “ tq, ru.

• dA “ 0 means the A-twig CA gets contracted to the node x, which then has to

land on the point of intersection ℓq X ℓr.

• B “ everything but q, r means the B-twig CB gets 3d ´ 2 marked points.

• In total, the image is a degree d rational curve with 3d ´ 2 ` node “ 3d ´ 1

marked points!

⇝ #Y X Dptq, ru, the rest ; 0, dq “ Nd
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Special Case II dA “ d; dB “ 0.

⇝ Empty intersection.

Everything else 1 ď dA ď n ´ 1.

• Y X DpA, B; dA, dBq ‰ H iff |A| “ 3dA ` 1.

• Number of set partitions pA | Bq s.t. |A| “ 3dA ` 1, q, r P A, s, t P B:

ˆ

3d ´ 4
3dA ´ 1

˙

.

• Recursive structure: Image of CA is a p3dA ´ 1q-pointed rational curve of

degree dA. Image of CB is a p3dB ´ 1q-pointed rational curve of degree dB.

⇝ Factor of NdA NdB .

• Image of q, r lands on intersections of the image of CA with ℓq, ℓr, respectively.

⇝ Factor of d2
A.

• Image of the node x “ CA X CB lands on intersections of images of CA, CB.

⇝ Factor of dAdB.

• In total for each such divisor,

#Y X DpA, B; dA, dBq “ d3
AdBNdA NdB

ˆ

3d ´ 4
3dA ´ 1

˙

.
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Thus,

LHS “ Nd `
ÿ

dA`dB“d,dAě1,dBě1

NdA NdB d3
AdB

ˆ

3d ´ 4
3dA ´ 1

˙

.

Next,

Dpqs | rtq “
ÿ

q,sPA,r,tPB,dA`dB“d

D pA, B; dA, dBq .

Examine terms in this sum:

Special Case I dA “ 0; dB “ d.

⇝ Empty intersection.

Special Case II dA “ d; dB “ 0.

⇝ Empty intersection.

Everything else 1 ď dA ď n ´ 1.

#Y X DpA, B; dA, dBq “ NdA NdB d2
Ad2

B

ˆ

3d ´ 4
3dA ´ 2

˙

.
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So

RHS “
ÿ

dA`dB“d,dAě1,dBě1

NdA NdB d2
Ad2

B

ˆ

3d ´ 4
3dA ´ 2

˙

.

All in all,

Nd `
ÿ

dA`dB“d,dAě1,dBě1

NdA NdBd3
AdB

ˆ

3d ´ 4
3dA ´ 1

˙

“
ÿ

dA`dB“d,dAě1,dBě1

NdA NdBd2
Ad2

B

ˆ

3d ´ 4
3dA ´ 2

˙

.

■
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4.2 Gromov-Witten Invariants

Let X be a convex variety (i.e. having enough lines: Pr, Grassmannians, the Flag variety,

etc., and products thereof).

• TX globally generated.

• ApXq has a natural basis consisting of Schubert classes.

Fix an effective class β P A1pXq. We can consider the moduli space of stable n-pointed

maps µ : C Ñ X whose image rµpCqs “ β:

M0,npX, βq.

We may similarly integrate pullback classes of the appropriate codimension and expect

the result to be a number.

Definition 4.2. Let γ1, . . . , γn P A‚pXq be classes such that

ÿ

codim pγiq “ dim X `

ż

β
c1 pTXq ` n ´ 3.

Then, the Gromov-Witten invariant is defined as

Iβ pγ1 ¨ ¨ ¨ γnq “

ż

M0,npX,βq

ev˚
1 pγ1q Y ¨ ¨ ¨ Y evn

˚
pγnq .

This is an integral over the (virtual) fundamental class M0,npX, βq. In the case that γi

all correspond to honest subvarieties Γi, the Gromov-Witten invariant then counts
:::
the

::::::::
number

:::
of

::::::::
curves

:::
in

::::
the

::::::
cycle

:::::
class

::
β
::::::::
which

::::
are

:::::::::
incident

:::
to

:::
all

:::
Γi.
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Figure 4.3: Number of curves in the class β incident to Γ1, . . . , Γn.

For X “ Pr (or Pic X – Z), by Id and M0,npPr, dq we mean β “ d ¨ hr´1 (d times class

of a straight line).

Example 4.4. For P2, we have

Idp h2
¨ ¨ ¨ h2

looomooon

3d´1 factors

q “ Nd

the number of rational curves of degree d which pass through 3d ´ 1 general points.

Example 4.5. In P3, the invariant I1
`

h2 ¨ h2 ¨ h2 ¨ h2˘

is the number of lines incident to four

given lines.

Example 4.6. For P3, the number

I3ph2
¨ ¨ ¨ h2

looomooon

6

¨ h3
¨ ¨ ¨ h3

looomooon

3

q

is the number of twisted cubics meeting 6 lines and 3 points. It is computed in the

21-dimensiona space M0,9
`

P3, 3
˘

.

Example 4.7. ***27 lines example?
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4.3 The Reconstruction Theorem
Proposition 4.8. Useful properties of Gromov-Witten invariants on Pr:

• (Mapping to a point) The only non-zero Gromov-Witten invariants with d “ 0 are

those with 3 marks and
ř

codim γi “ r. In this case we have

I0 pγ1 ¨ γ2 ¨ γ3q “

ż

Pr
γ1 Y γ2 Y γ3.

• (Two-pointed invariants) The only non-zero Gromov-Witten invariants with less than

three marks are

I1 phr
¨ hr

q “ 1,

i.e. there is a unique line passing through two distinct points.

• (Divisor equation) Suppose d ą 0 and that one of the classes is the hyperplane class,

say γn`1 “ h. Then

Id pγ1 ¨ ¨ ¨ γn ¨ hq “ Id pγ1 ¨ ¨ ¨ γnq ¨ d

The recursive structure of boundary divisors, namely

D pA, B; dA, dBq » M0,AYtxu pPr, dAq ˆPr M0,BYtxu pPr, dBq

acquires the following new guise:
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Lemma 4.9 (Splitting lemma). For a boundary divisor D, let α : D ãÑ M be the natural

inclusion, and let ι : D –
`

evxA ˆ evxB

˘´1
p∆q ãÑ MA ˆ MB be the inclusion as the

inverse image of the diagonal. Then for any classes γ1, . . . , γn P A˚ pPrq the following

identity holds in A˚
`

MA ˆ MB
˘

:

ι˚α˚ev˚
pγq “

ÿ

e` f “r

˜

ź

aPA

ev˚
a pγaq ¨ ev˚

xA
phe

q

¸

ˆ

˜

ź

bPB

ev˚
b pγbq ¨ ev˚

xB

´

h f
¯

¸

Corollary 4.10 (A general recursive formula).

ż

D
ev˚

1 pγ1q Y ¨ ¨ ¨ Y ev˚
n pγnq “

ÿ

e` f “r

IdA

˜

ź

aPA

γa ¨ he

¸

¨ IdB

˜

ź

bPB

γb ¨ h f

¸

.

All Gromov-Witten invariants for Pr can similarly be reconstructed from these recur-

sions, knowing just
::
a

:::::::
single

::::::
initial

:::::::::::
condition.

Theorem 4.11 (Reconstruction theorem for Pr). (Kontsevich-Manin and Ruan-Tian.)

All the Gromov-Witten invariants for Pr can be computed recursively, and the only necessary

initial value is I1 phr ¨ hrq “ 1, the number of lines through two points.

d Nd

1 1

2 1

3 12

4 620

5 87304

6 26312976

7 14616808192

First few invariants for P2.
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5 Quantum Cohomology

We have some huge recursions and numbers that blows up. We should try organizing

them into generating series.

5.1 An Interlude on Generating Functions

Definition 5.1. Let tNku8
k“0 be a sequence of numbers. The exponential generating

function for Nk is

Fpxq :“
8
ÿ

k“0

xk

k!
Nk.

Slogan.

unordered objects⇝ ordinary generating functions

labeled objects⇝ exponential generating functions

Example 5.2. The derivative of an exponential generating function is a shift in its indices:

d
dx

F “

8
ÿ

k“1

k
xk´1

k!
Nk “

8
ÿ

k“0

xk

k!
Nk`1.

Example 5.3. Fibonacci numbers.

• Initial conditions:

N0 “ N1 “ 1.

• Recursion:

Nk`2 “ Nk`1 ` Nk.

• In terms of the generating function:

Fxx “ Fx ` F.

Slogan.

Recursive formulae ðñ PDE in generating functions
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5.2 Quantum Cohomology and Associativity of the Quantum Product

⇝ Multi indicies: For x “ px0, . . . , xrq and a “ pa0, . . . , arq, and define

xa
“ xa0

0 ¨ ¨ ¨ xar
r and a! “ a0! ¨ ¨ ¨ ar!

⇝ By the ‘‚’ in phiq‚ai , we mean take i many times the class hi, which is NOT the same

as taking the their product in the Chow ring.

⇝ Short hand for Id: write

I pγ1 ¨ ¨ ¨ γnq :“
8
ÿ

d“0

Id pγ1 ¨ ¨ ¨ γnq ,

since at most one of the terms is non-zero, namely when

d “

ř

codim γi ´ r ´ n ` 3
r ` 1

.

Definition 5.4. The Gromov-Witten potential for classes ph0q‚a0 , . . . , phrq‚ar P ApPrq is the

multi-indexed exponential generating function

Φpxq :“
ÿ

a

xa

a!
I pha

q

“
ÿ

a0,...,ar

xa0
0 ¨ ¨ ¨ xar

r

a0! ¨ ¨ ¨ ar!
I

´´

h0
¯‚a0

´

h1
¯‚a1

¨ ¨ ¨ phr
q

‚ar
¯

.

Definition 5.5. The partial derivatives of Φ are the usual formal partials of a series:

Φijk “
ÿ

a

xa

a!
I

´

ha
¨ hi

¨ hi
¨ hk

¯

.

Definition 5.6. The quantum product for A‚pPrq is defined by

hi
˚ hj :“

ÿ

0ďkďr

Φijkhr´k.
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Slogan. Φijk are the structural constants for the quantum product.

Note that the quantum product now has extra parameters xa in the Φijk.

Definition 5.7. The (big) quantum cohomology ring for Pr is A‚ pPrq bZ Qrrxss. The

product structure is obtained by extending the quantum product Qrrxss-linearly.

The quantum product is obviously commutative. Associativity will be established

later.

Example 5.8. (Recovering the usual intersection product.) If one of the three indices of

Φijk is zero, say i “ 0, then

Φ0jk “

8
ÿ

n“0

1
n!

ÿ

dě0

Id

´

γ‚n
¨ h0

¨ hj
¨ hk

¯

“ I0

´

h0
¨ hj

¨ hk
¯

“

ż

Pr
hj

Y hk.

Example 5.9. The fundamental class h0 is the identity for ˚.

Theorem 5.10. The quantum product ˚ is associative.

Proof

(Sketch) We want to show

´

hi
˚ hj

¯

˚ hk
“ hi

˚

´

hj
˚ hk

¯

.

Expanding, this is equivalent to

ÿ

e` f “r

ÿ

l`m“r

ΦijeΦ f klhm
“

ÿ

e` f “r

ÿ

l`m“r

ΦjkeΦ f ilhm.

Since the hi are independent, we just need to equate coefficients in front of each
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degree:
ÿ

e` f “r

ΦijeΦ f kl “
ÿ

e` f “r

ΦjkeΦ f il.

These are the WDVV equations (Witten-Dijkgraaf-Verlinde-Verlinde). Further

expanding (abbreviating irrelevant classes to γ), we get

ÿ

e` f “r

ÿ

nA`nB“n

n!
nA!nB!

I
´

γ‚nA ¨ hi
¨ hj

¨ he
¯

I
´

γ‚nB ¨ h f
¨ hk

¨ hl
¯

“
ÿ

e` f “r

ÿ

nA`nB“n

n!
nA!nB!

I
´

γ‚nA ¨ hj
¨ hk

¨ he
¯

I
´

γ‚nB ¨ h f
¨ hi

¨ hl
¯

.

This again follows from the fundamental relation

D pp1 p2 | p3 p4q ” D pp2 p3 | p1 p4q

on the moduli space M0,n`4pPr, dq, via the splitting lemma:

■
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5.3 Kontsevich’s Formula via Associativity

The only non-zero invariants for I0 are the 3-pointed invariants I0phi ¨ hj ¨ hkq “
ş

Pr hi Y

hj Y hk. The curve-counting information is contained in the d ą 0 part.

Let I` :“
ř

dą0 Id. Then, we can decompose the full Gromov-Witten potential into

d “ 0 and d ą 0 parts.

Definition 5.11.

Φ “ Φcl
` Γ

where

Φcl
“

ÿ

i,j,k

xixjxk

3!
I0

´

hi
¨ hj

¨ hk
¯

is called the classical potential, and

Γ “

8
ÿ

n“0

1
n!

I` pγ‚n
q

is the quantum potential.

Similarly, the quantum product decomposes into a classical and a quantum part.

hi
˚ hj

“
ÿ

0ďkďr

´

I0

´

hi
¨ hj

¨ hk
¯

` Γijk

¯

hr´k

“ hi
Y hj

`
ÿ

0ďkďr

Γijkhr´k.

(Holds for more general X.)

Slogan. The quantum product is a deformation of the classical intersection product.

Theorem 5.12. Associativity of the quantum product on P2 implies Kontsevich’s recursive

formula.
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Proof

For P2, we have
h1 ˚ h1 “ h2` Γ111h1 ` Γ112h0

h1 ˚ h2 “ Γ121h1 ` Γ122h0

h2 ˚ h2 “ Γ221h1 ` Γ222h0.

The associativity
´

h1
˚ h1

¯

˚ h2
“ h1

˚

´

h1
˚ h2

¯

expands as

Γ221h1
` Γ222h0

` Γ111

´

Γ121h1
` Γ122h0

¯

` Γ112h2
“ Γ121

´

h2
` Γ111h1

` Γ112h0
¯

` Γ122h1.

Equating coefficients of h0, we obtain

Γ222 ` Γ111Γ122 “ Γ112Γ112.

Expanding,

I`

´´

h2
¯‚n

h2h2h2
¯

`
ÿ

nA`nB“n

n!
nA!nB!

I`

´´

h2
¯‚nA

h1h1h1
¯

I`

´´

h2
¯‚nB

h1h2h2
¯

“
ÿ

nA`nB“n

n!
nA!nB!

I`

´´

h2
¯‚nA

h1h1h2
¯

I`

´´

h2
¯‚nB

h1h1h2
¯

.

Interpreting each I` term enumeratively, this is nothing else but Kontsevich’s

formula!

Nd`
ÿ

dA`dB“d

p3d ´ 4q!
p3dA ´ 1q! p3dB ´ 3q!

d3
ANdA dBNdB

“
ÿ

dA`dB“d

p3d ´ 4q!
p3dA ´ 2q! p3dB ´ 2q!

d2
ANdA d2

BNdB .

■
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5.4 The Small Quantum Cohomology, Algebraic Combinatorics, and

More

⇝ truncated ring with only the three-pointed invariants as structural constants.

Φijk “

8
ÿ

n“0

xn

n!

ÿ

dą0

dn
¨ Id

´

hi
¨ hj

¨ hk
¯

“ I0

´

hi
¨ hj

¨ hk
¯

` q ¨ I1

´

hi
¨ hj

¨ hk
¯

for q :“ exppxq.

⇝ the original definition of the quantum cohomology.

⇝ small quantum product:

hi
˚ hj

“

$

&

%

hi`j for i ` j ď r

qhi`j´r´1 for r ă i ` j ď 2r

⇝ small quantum cohomology for Pr:

Zrh, qs{

´

hr`1
´ q

¯

“deformation of the cohomology ring by the q parameter.”

⇝ “quantum Schubert calculus”

Classically:

Example 5.13. (Pieri rule)

pσb ¨ σaq “
ÿ

|c|“|a|`b
aiďciďai´1@i

σc
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Example 5.14. (Giambelli’s formula)

σa1,a2,...,ak “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σa1 σa1`1 σa1`2 ¨ ¨ ¨ σa1`k´1

σa2´1 σa2 σa2`1 ¨ ¨ ¨ σa2`k´2

σa3´2 σa3´1 σa3 ¨ ¨ ¨ σa3`k´3
...

...
... . . . ...

σak´k`1 σak´k`2 σak´k`3 ¨ ¨ ¨ σak

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Example 5.15. (Littlewood-Richardson coefficients) The structural constants cν
λµ equals

the number of skew semistandard Young tableaux of shape λ{µ and filling ν whose

reverse row word is ballot.

s31s21 “ s52 ` s511 ` s43 ` 2s421 ` s331 ` s4111 ` s322 ` s3211

⇝ Postnikov (2003): Defined toric SSYT and toric Schur polynomials and formulated

quantum Pieri rule and quantum Kostka numbers in terms of those. Quantum Giambelli

formula is the same as the classical formula.
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The quantum Littlewood-Richardson rule for tableaux is still wide open till this date.

⇝ Knutson-Tao honeycomb puzzles for equivariant quantum cohomology.

Figure 5.16: An equivariant Knutson-Tao puzzle in the original paper.

⇝ Partial flag varieties, other types (B, C, ...)

⇝ Combinatorics for quantum K-theory.

⇝ Jim Bryan’s work on Banana manifolds and modular forms.

Useful references:

• (Bertiger 2018) Equivariant Quantum Cohomology of the Grassmannian via the Rim

Hook Rule. https://arxiv.org/abs/1403.6218

• (Mihalcea 2004) Equivariant Quantum Schubert Calculus. https://arxiv.org/abs/

math/0406066

• (Postnikov 2002) Affine Approach to Quantum Schubert Calculus. https://arxiv.

org/abs/math/0205165
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• (Bertiger 2022) An Equivariant Quantum Pieri Rule for the Grassmannian on Cylin-

dric Shapes. https://arxiv.org/abs/2010.15395

• (Bryan and Pietromonaco 2024) The Enumerative Geometry and Arithmetic of

Banana Nano-Manifolds. https://arxiv.org/abs/2405.04701

Thank you for your attention!
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