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Abstract. This write-up is the accompaniment of a talk given in the UW Student AG Seminar in

Autumn 2023, and the topic is algebraic K-theory.

Vaguely, K-theory is the universal machine of additive invariants which allows us to study assem-

bly problems in the form of short exact sequences. It originated from the study of assembling vector

bundles, now referred to as topological K-theory. The famous theorem(s) due to Serre and Swan

establishes a link between vector bundles and finitely generated projective modules. This allows us

to transfer the machinery into the land of algebraic K-theory, where we try to assemble projective

modules. More recent developments generalizes K-theory to other categories, where these assembly

problems receive a more combinatorial treatment.

In this surface-level overview, we begin with a review of topological K-theory. With that, we

motivate the constructions of K0,K1,K2 in algebraic K-theory, and carry out explicit computations.

Then, we move on to discuss classifying spaces and Quillen’s constructions for higher K-groups.

Finally, we take an excursion on ways to generalize the underlying framework of K-theory to different

settings.
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1. K-Theory Origins: Topological K-Theory

First studied by Michael Atiyah and Friedrich Hirzebruch, topogical K-theory originates from

the study of vector bundles on a topological space. It has produced major classical results in

terms of parallelizability of spheres and the existence of division algebras over the reals (the

solution of the Hopf invariant one problem due to Frank Adams).

1.1. Vector Bundles. A vector bundle is a family of vector spaces parametrized over some base

space.

Definition 1.1. A vector bundle E on a base space B is is a topological space together with a map

p : E→ B such that for all b ∈ B,

• p−1(b) ∼= F for some vector space F (independent of b), and

• (Local trivialization) for all b ∈ B, there is a neighborhood U of b and an integer k (the

rank) with a homeomorphism ϕb : U × Rk → p−1(U) such that the following diagram

commutes,

U× Rk p−1(U)

U

ϕb

and the restriction of ϕb to each fiber is a linear homomorphism.

Example 1.2. The trivial bundle X × Rn, the tangent bundle TM, and the normal bundle of a

manifold M are all examples of vector bundles.

Vector bundles over a manifold can be reconstructed solely from the data of an atlas and the

transition functions:

gαβ : Uα ∩Uβ → GLk(R).

They satisfy three things

• gαα = id

• gαβ(x) = gβα(x)
−1

• gαβ(x)gβγ(x)gγα(x) = id for x ∈ Uα ∩Uβ ∩Uγ.



A LEISURELY INTRODUCTION TO ALGEBRAIC K-THEORY 3

The reconstructed vector bundle would then be

E =
∐
α

Uα × Rk/(x, v) ∼ (x,gαβ(x) · v)

Fix the base space X and field k. k-vector bundles over X form a category, with objects

E

B

p

and morphisms as commuting triangles

E E ′

B

ϕ

Let Vectk(B) denote the set of isomorphism classes of rank k vector bundles over the base B,

and let Grk be the infinite Grassmannian, viewed as a colimit lim−→n
Grk(Rn)via the submatrix

embedding. There is a bijective correspondence between rank n vector bundles over B and the

homotopy class of maps from B to the infinite Grassmannian.

Theorem 1.3 ([5] 1.43). There is a bijection of sets Vectk(B) ∼= [B,Grk].

In other words, vector bundles up to isomorphism are entirely determined by homotopical data of the

base space.

Remark 1.4. The above result generalizes to any group G and principle G-bundles over B. A

principle G-bundle is a fiber bundle with a transitive free G-action on each fiber (making fibers

into G-torsors). The transition functions are then elements of G. In that case, isomorphism classes

of principle G-bundles bijectively correspond with homotopy classes of maps from B into BG, the

classifying space of G.

PrinG(B) ∼= [B,BG]

1.2. Grothendieck Group and K0. There are natural constructions on the set of vector bundles

over a fixed base space B.

Definition 1.5. The Whitney sum of two vector bundles E → B and E ′ → B is formed by direct

summing on each fiber and is denoted as E⊕ E ′.
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Definition 1.6. The tensor product of two vector bundles E → B and E ′ → B is formed by

tensoring on each fiber and is denoted as E⊗ E ′.

Let Vect(B) denote isomorphism classes of vector bundles over some fixed B. Vect(B) natu-

rally forms a semiring with these operations –– that is, the ⊕ and ⊗ satisfy all ring axioms but

the existence of additive inverses. A quick example would be the natural numbers N, missing all the

negative integers.

Let us recall what we all did in our first real analysis course. How did we construct the

integers? Well, we first assumed mathematical induction and got the natural numbers N. then,

group completion was the trick we used to get all integers Z. In fact, this construction holds in

much more generality including our example. The minimum requirement for the trick to work

is having a commutative monoid.

Theorem 1.7. Let U : Ab → CMon be the forgetful functor from the category of Abelian groups to

commutative monoids. Then, U has a left adjoint F : CMon→ Ab called the group completion functor.

That is to say, every commutative monoid admits a group completion. A common model of

such a completion is the Grothendieck group.

Definition 1.8. Let A be a semiring (thus a commutative monoid). For pairs of elements (a,b) ∈

A × A, define the equivalence relation where (a1,b1) ∼ (a2,b2) iff a1 + b2 = a2 + b1. The

Grothendieck group of A is the Abelian group

Gr(A) := A×A/ ∼

Remark 1.9. The inherited semiring structure makes Gr(A) a ring.

Example 1.10. (N,+, ·) is a semiring. The pairs of natural numbers (2, 5) ∼ (4, 7) because 2 + 7 =

5+4. The Grothendieck group Gr(N) is (Z,+, ·), where the equivalence class [(2, 5)] is the negative

integer −3.

Now, since Vect(B) is a semiring, we can do the group completion and get the definition of

K0.
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Definition 1.11. The 0-th K-group of a compact Hausdorff space X is the Grothendieck group of

the semiring Vect(X):

K0(X) := Gr(Vect(X))

Note that the above definition is over C. We use KO0 to denote the real K-theory for the same

construction over real vector bundles.

1.3. Reduced K-theory K̃. Furthermore, we consider the isomorphism classes of stable vector

bundles.

Definition 1.12. Let εi denote the trivial rank-i bundle B×ki → B. Two vector bundles E,E ′ → B

are stably isomorphic if there exists i, j such that E⊕ εi ∼= E ′ ⊕ εj.

Intuitively, we are killing all classes of trivial bundles in the ring, because what’s interesting are

the non-trivial bundles. The reduced K-theory is defined to be the K-theory of stably isomorphic

vector bundles.

Definition 1.13. The reduced K0-group of a topological space X is defined to be

K̃0(X) := Gr(Vect(X)/ ∼)

Remark 1.14. We will see that K-theories can be made into generalized cohomology theories. In

that sense, this definition of reduced K-theory agrees with the reduced cohomology theory of

K-theory. More explicitly, we have the universal map ι : Z → K0(X) by sending n 7→ nε1. Then,

K̃0(X) = K0(X)/ι(Z) where trivial bundles which are all generated by ε1 are killed.

Remark 1.15. Both K0(–) and K̃0(–) are functorial.

1.4. Higher K-Groups and Bott Periodicity. One definition of K1 came out first, and it concerns

the automorphism classes of vector bundles. Nevertheless, the framework of generalized cohomol-

ogy theories motivates us to make the following generalization:

Definition 1.16. For a space X, let ΣX denote reduced suspension of X. The (reduced) negative

K-groups are the K̃0 of the n-fold suspensions of X.

K̃−n(X) := K̃0(ΣnX)



6 ‘MICHAEL’ ZENG, RUOFAN

The negative indexing here is due to contravariance, but we will later see that this definition

carries to positive indices as well. We have an equivalent definition, but it invokes a little category

theory:

Theorem 1.17. There is an adjunction within the category of pointed topological spaces, given by the

suspension functor Σ and the loop space functor Ω

Hom(ΣX, Y) ∼= Hom(X,ΩY)

Now, recall that VectC(X) ∼= [X,BU]. We obtain the following by exchanging suspension and

loop space:

Proposition 1.18. The negative K-groups are defined equivalently as

K̃−n(X) = Gr([X,ΩnBU])

Also, it is good to have an unreduced version defined in the usual way:

Definition 1.19. Let X+ = X ⊔ ∗. The (unreduced) K-groups of a space X are

K−n(X) := K̃−n(X+)

Now we can get to appreciate the power of topological K-theory. In the 1950s, Raoul Bott

discovered arguably the most central result in topological K-theory, a periodicity phenomenon in

the homotopy groups of classical Lie groups.

Lemma 1.20. Lemma 4.6. There are weak equivalences

Φ : BU→ ΩU

and
Φ1 : BSp→ Ω(U/Sp), Φ2 : BO→ Ω(U/O)

Φ3 : U/Sp→ Ω(SO/U), Φ4 : U/O→ Ω(Sp/U),

Φ5 : SO/U→ ΩSO, Φ6 : Sp/U→ ΩSp,

called Bott maps.

Theorem 1.21 ([5] 4.5). Theorem 4.5 (Bott Periodicity).
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πiU ∼= πi+2U

πiO ∼= πi+8O

Corollary 1.22. The K and KO-groups are periodic:

K̃•(X) ∼= K̃•+2(X)

K̃O
•
(X) ∼= K̃O

•+8
(X)

Using Bott periodicity, we can finally extend the definition of negative K-groups to all of Z,

but its magic does not stop here.

Remark 1.23. We have seen that K0 classifies vector bundles. What are the higher K-groups

measuring? The answer turns out to be automorphism groups of vector bundles.

Consider K1 as an example. We have

K1(X) ∼= [ΣX,BU] ∼= [X,ΩBU]

so each a loop in BU is assigned to each point of X. The key realization is that each loop in BU

correspond to an automorphism of the vector bundle corresponding to the end point of the loop

in BU. Therefore, K1 captures partial information of automorphism groups of vector bundles.

Remark 1.24. There is an operator-theoretic way of interpreting the K-groups, via the Atiyah-

Jänich theorem:

Theorem 1.25. (Atiyah-Jänich) Let H be any separable Hilbert space and F(H) be the space of Fredholm

operators on H. Then, there is a bijective correspondence

[X,F(H)] ∼= K0(X)

This correspondence leads to developments in what’s called operator K-theory.

1.5. Applications of Topological K-Theory. The discovery of Bott periodicity led to a few major

breakthroughs in algebraic topology. In specific, it solves the famous Hopf invariant one problem

concerning the existence of normed division algebras over R. Briefly, the Hopf invariant is a

number associated with maps f : S2n−1 → S2n which equals 1 only if there is a corresponding
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Hopf fibration. Adams proved first using the Steenrod algebra and then K-theory that this can

only happen when n = 1, 2, 4.

Theorem 1.26 ([2]). There exists normed division algebras over R only in dimensions 1, 2, 4, and 8.

These are R, C, H, and O upto isomorphism. Correspondingly, the only parallelizable spheres are S1, S3,

and S7.

A nice schematic Figure 1.27 is provided in Adam’s original paper [[11] p60].

Figure 1.27. Adam’s Flow Chart

Using K-Theory, Adams also gave a sharp bound on the maximum number of everywhere

linearly independent vector fields on spheres.

Definition 1.28. For n written as the product of an odd number A and a power of two 2B, write

B = c+ 4d, 0 ⩽ c < 4.

Then, the Radon-Hurwitz number is defined as

ρ(n) = 2c + 8d.
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Theorem 1.29 ([3] p1036). The maximum number of everywhere linearly independent vector fields on

Sn is ρ(n) − 1.

1.6. Generalized Cohomology Theory. K-Theory is a generalized cohomology theory in that it

satisfies all the Eilenberg-Steenrod axioms but the dimension axiom. A spectrum is a sequence

of spaces E = {Ei} with structure maps ΣEi → Ei+1 (dually Ei → ΩEi+1). Brown Representability

Theorem says that every generalized cohomology theory is represented by a spectrum.

Theorem 1.30. (Complex) K-theory is represented by the K-theory spectrum KU in the sense that K(X) ∼=

[X,KU], where

KUi =

Z× BU i even

U i odd.

Similarly, KO-theory is represented by the spectrum KO.
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2. From Topology to Algebra: the Serre-Swan Theorem

What does all of that has to do with algebraic geometry? The answer is that vector bundles

should really be thought of as projective modules over some coordinate ring.

First, recall the following equivalent definitions of projective (right) modules:

Proposition 2.1. P is a projective R-module iff

• P is a direct summand of a free module.

• P has the lifting property.

• Hom(P, –) is exact.

• Every SES ending in P splits.

The following lemma immediately suggests a close connection between bundles and projective

modules.

Lemma 2.2. Every finite rank vector bundle η over a compact Hausdorff space X is a direct summand of

a trivial bundle.

Proof. Since X is compact Hausdorff, it is covered by finitely many opens Ui. Choose sji from

global sections to form a local basis over each Ui. Again, there are finitely many of them, say the

number is N. Hence, we can form the trivial bundle of rank N,

ξ : X× RN → X

with generators eji indexed in the same way, and a surjection

π : ξ→ η, eji 7→ sji

We then have a SES

0→ kerπ→ ξ→ η→ 0

which splits by the orthogonal projection ξ→ kerπ. Therefore,

η⊕ kerπ ∼= ξ

□
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The above fact results in the correspondence between vector bundles and projective modules

in a number of settings. First, there is Swan’s theorem which deals with topological vector bundles.

Theorem 2.3 (Swan ’62). Given a compact Hausdorff space X, the category of finitely generated projective

modules Proj(C(X)) over the continuous-function algebra C(X) is equivalent to the category of finite-rank

vector bundles Vect(X).

Proof. (Sketch) The direction

Vect(X)→ Proj(C(X))

is clearly given by the global sections functor:

(η : E→ X) 7→ Γ(η,C(X))

By Theorem 2.2, η⊕ ζ ∼= ξ for some trivial bundle ξ, and Γ(–,C(X)) takes a split mono to a split

mono, so we obtain

Γ(η,C(X))⊕ Γ(ζ,C(X)) ∼= Γ(ξ,C(X))

where Γ(ξ,X) is finitely generated free since ξ is trivial of finite rank. We therefore conclude that

Γ(η,C(X)) is projective.

For the direction of

Proj(C(X))→ Vect(X),

take any projective module P, being a direct summand of free: P ⊕M ∼= C(X)n =: F. This means

that there is an idempotent hom f : F → F with image P. F is given by any trivial rank-n bundle,

so say F = Γ(ξ,C(X)). Then, f corresponds to some map φ : ξ → ξ of bundles such that f = φ.

After a little work checking everything is well-defined, we see that P corresponds to the image of

φ, which is a subbundle of ξ.

□

We can transfer this result to smooth bundles and get the smooth Serre-Swan theorem:

Theorem 2.4. Given a differentiable manifold M, the category of finitely generated projective modules

Proj(C∞(M)) over the algebra of smooth functions C∞(M) is equivalent to the category of finite-rank

vector bundles Vect(M).
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The original Serre’s theorem concerns more or less with algebraic vector bundles over affine

varieties. It was used to answer the question “Is every projective module over k[x1, ..., xn] free?” and

the answer was YES.

Theorem 2.5 (Serre 55). let R be commmutative unital Noetherian (in particular, the coordinate ring

of an affine variety over a field). The category of finitely-generated projective R modules is equivalent

to the category of algebraic vector bundles –– locally free sheaves of structure sheaf-modules of constant

finite rank) on SpecR.

Indeed, a more general phenomenon is taking place in the background. As discussed in the

notes by Archana S. Morye in [7], the Serre-Swan correspondence holds in the generality of locally

ringed spaces.

For any ringed space (X,OX), let OXMod denote the category of OX-modules, and Lfb(X) the

full subcategory of OX-mod consisting of locally free OX-modules of bounded rank. For any

ring A, let A-mod denote the category of A-modules, and Fgp(A) the full subcategory of A-mod

consisting of finitely generated projective A-modules.

Theorem 2.6 ([7] Theorem 2.1). Let (X,OX) be a locally ringed space, and let A = Γ (X,OX). Assume

that OX-mod contains a certain nice subcategory, and that every sheaf in Lfb(X) is finitely generated by

global sections. Then, Γ(X, •) : Lfb(X) → Fgp(A) is an equivalence of categories, i.e., the Serre-Swan

Theorem holds for (X,OX).
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3. Algebraic K-Theory: Classical Constructions

We have seen the analogy between vector bundles and projective modules in the Serre-Swan

theorem. Up until this section, we have been working with modules over the ring of continu-

ous sections, but there are so many other base rings that we can choose from! Transferring the

machinery of K-theory into the land of algebraic geometry, we hope to be able to cook up some

invariants which give us useful information about the classification of projective modules.

Throughout this chapter, the base ring R is assumed to be associative unital unless otherwise

specified (to be commutative).

3.1. The Grothendieck Group K0. For R associative unital, let Proj(R) denote the isomorphism

classes of finitely generated projective R-modules. Proj(R) is naturally endowed with direct

sum ⊕ and tensor ⊗, making it a commutative monoid. As a consequence of Serre-Swan, the

construction of K0 transfers immediately to isomorphism classes of projective modules, giving us

an invariant that classifies projective modules.

Definition 3.1. The zeroth algebraic K-group of the ring R is

K0R := Gr(Proj(R))

Analogously, we have the notion of a reduced K-group, defined via “stably isomorphic" pro-

jective modules. Define an equivalence relationship on Proj(R), where M ∼ N whenever there

are free modules such that M⊕ Rn ∼= N⊕ Rm. Then, modulo ∼, we have

Definition 3.2. The reduced zeroth algebraic K-group of the ring R is

K̃0R := Gr(Proj(R)/ ∼)

Per previous discussion, reduced K-groups ought to be interpreted in terms of reduced gener-

alized cohomology theories, which remains true for algebraic K-theory. Again, use the canonical

map ι : Z→ K0R,n 7→ n[R]. Then,

K0R = K0R/ι(Z)
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where all free modules are killed.

In the case of commutative rings, we have the following exact sequence

0→ Z→ K0R→ K̃0R→ 0

which splits. As a consequence,

Proposition 3.3. For a commutative unital ring R,

K0R ∼= K̃0R⊕ Z

Remark 3.4. Why do we restrict our attention to finitely generated modules? It turns out that

something quite silly will happen if we allow modules of infinite rank. Suppose P is a projective

modules such that P ⊕Q ∼= Rn. Then,

P ⊕ R∞ = P ⊕ Rn ⊕ Rn ⊕ ...

= P ⊕ (Q⊕ P)⊕ (Q⊕ P)⊕ ...

= (P ⊕Q)⊕ (P ⊕Q)⊕ ...

= Rn ⊕ Rn ⊕ ...

= R∞
so everything becomes stably free and therefore trivial! This is known as the Eilenberg Swindle.

3.1.1. A Tangent on Group Completions. The reader might have seen another model for group

completions.

Proposition 3.5. The following is an equivalent construction for a group completion. Given a commu-

tative monoid M, let F(M) be the free abelian group on the letters [m] for all m ∈ M. Then, the group

completion of M is

Gr(M) := F(M)/ < [m+ n] − [m] − [n] >

We have seen that Gr(N) = Z. Now let us go on a tangent and compute some other group

completions.

Example 3.6. The non-zero integers Z̸=0 under multiplication is a commutative monoid. Its

group completion is Q×. This can be easily seen: in Gr(Z̸=0), (a,b) ∼ (c,d) iff ad = bc, but that

is the same equivalence relation which defines Q.
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The following two examples concerns the representation theory of finite groups.

Example 3.7 ([1] Example 2.1.5). Burnside Ring. Let GSetsfin be the category (in fact, the set)

of isomorphism classes of finite G-sets. GSetsfin is a commutative monoid under disjoint union

and direct product. If X is a finite G-set, then we can decompose it into a disjoing union of orbits,

X =
⊔

Xi

By stabilizer-orbit, we know that each Xi
∼= G/Stab(xi) for an element xi ∈ Xi, and all subgroups

of G can be Stab(xi) for some orbit Xi. Also, if H,H ′ ⊆ G are conjugate, then G/H ∼= G/H ′.

Therefore, the set of all possible non-isomorphic G-orbits is just the set of conjugacy classes of

G, which is again a finite set. Suppose that G has c conjugacy classes. Then, GSetsfin being

generated by the c non-isomorphic G-orbits, we have

GSetsfin ∼= Nc

whence the group completion of GSetsfin equals

A(G) := Gr(GSetsfin) ∼= Zc

With the direct product, A(G) is called the Burnside ring of G. As an example,

A(Cp) = Z[x]/(x2 − px)

Example 3.8 ([1] Example 2.1.6). Representation ring. For a finite group G, let RepC(G) be the set

of finite dimensional C-representations of G. RepC(G) is a commutative monoid under ⊕ and ⊗.

By Maschke’s theorem, every C-representation is completely reducible, and all non-isomorphic

irreducible representations are one-dimensional and depend only on the conjugacy classes of G.

Hence,

RepC(G) ∼= Nc

again, and its group completion is

RC(G) := Gr(RepC)(G) ∼= Zc

With the tensor product, RC(G) is called the (C-) representation ring of G. As an example,

RC(Cp) = Z[x]/(xp − 1)
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and more generally, if M is a finite abelian group, then

RC(M) ∼= Z[M̂]

where M̂ is the group of C-characters of M.

3.2. Computing Algebraic K0. Algebraic K0 has been computed in a lot of instances. Let us look

at some simplest examples.

Example 3.9. Fields. R = k where k is a field. Then, finitely generated projective modules over k

are just finite-dimensional k-vector spaces, so Proj(k) ∼= N via taking the rank and K0(k) ∼= Z.

Example 3.10. PID. Let R be a PID. We know that finitely generated projective modules over

a PID are free, so again Proj(R) ∼= N via taking the rank, and K0(R) ∼= Z. As a consequence,

K0(Z) ∼= Z.

The definition of algebraic K0 recovers the topological K0 groups.

Example 3.11. Continuous functions. Let R be C(X,R), the ring of continuous function from a

space X to R. Via Serre-Swan, we see that

K0C(X,R) ∼= KO0(X)

Similarly,

K0C(X,C) ∼= K0(X)

Example 3.12 ([4] p2). Dedekind domain. Let R be a Dedekind domain. This means that R

has unique factorization of ideals, and its ideal classes are the equivalence classes of fractional ideals

∼: a ∼ b iff exists x,y such that xa = yb. The ideal classes of R therefore forms a group under

multiplication, and it is the ideal class group of R, denoted Cl(R). (One quickly sees that this is

equivalent to saying Cl(R) := J(R)/P(R))

Now, recall that every finitely generated projective R-module is a direct sum of ideals, and vice

versa. Therefore, Proj(R) is isomorphic as a commutative monoid to the free monoid on all

fractional ideals of R. After group completion, we have the following isomorphism:

K0(R) ∼= Z⊕ Cl(R), [a0 ⊕ ...⊕ al] 7→ (l, [a1, ..., al])



A LEISURELY INTRODUCTION TO ALGEBRAIC K-THEORY 17

Let us make this concrete via the following classic example of a Dedekind domain. Let R =

Z[
√
−5]. This is a Dedekind domain but not a UFD, because 2 × 3 = (1 +

√
−5)(1 −

√
−5).

Cl(R) ∼= Z/2 with generator (3, 2 +
√
−5). Therefore, K0(Z[

√
−5]) ∼= Z⊕ Z/2.

Seen in the following propositions, K0 behave nicely with other standard constructions in the

category of associative unital rings, which gives us more computational tools.

Proposition 3.13. K0 is functorial.

Proposition 3.14. K0 commutes with direct products.

K0(R1 × R2) ∼= K0(R1)× K0(R2)

Proposition 3.15 ([1] 2.1.6). K0 commutes with filtered colimits.

K0(lim−→Ri) ∼= lim−→K0(Ri)

The next few examples deal with cases where all modules are projective. Recall, a ring R is

simple (resp. semisimple) if it is a simple (resp. semisimple) module over itself.

Proposition 3.16. TFAE:

• R is semisimple.

• R is semisimple Artinian.

• Any right R-module is projective.

• Any right R-module is injective.

• R has no non-zero nilpotent right ideals.

A famous theorem by Artin and Wedderburn classifies all seimsimple rings.

Theorem 3.17 (Wedderburn-Artin). If R is semisimple, then there exists division algebras Di, ...,Dr

such that R is isomorphic to the direct product of matrix algebras over the Di.

R ∼= Mn1(D1)× ...×Mnr
(Dr)

Example 3.18 ([1] 2.1.2). Simple rings. If R is simple, then it is semisimple, so every R-module

is projective. Taking the length is an invariant of finitely generated R-modules, which induces an

isomorphism K0(R) ∼= Z. As an example, the matrix algebra Mn(D) is simple for any division
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algebra D, so

Mn(D) ∼= Z

Example 3.19 ([1] 2.1.4). Semisimple rings. If R is semisimple, then by Wedderburn-Artin, R ∼=

Mn1(D1)× ...×Mnr
(Dr). Therefore,

K0(R) ∼= K0(Mn1(D1))× ...× K0(Mnr
(Dr)) ∼= Zr

Since K0 depends only on Proj(R), it should be invariant when two rings have equivalent

categories of modules.

Definition 3.20. Rings R and S are Morita equivalent if RMod and SMod are equivalent as

abelian categories.

In particular, an equivalence of abelian categories is a pair of additive functors, say

RMod T−→
←−
U

SMod

Let P = T(R) and Q = U(S). The following theorem holds.

Theorem 3.21 ([1] Theorem 2.7). Structure Theorem for Morita Equivalence. R,S,P,Q as above.

• P and Q are finitely generated projective.

• EndS(P) ∼= R ∼= EndS(Q)op and EndR(Q) ∼= S ∼= EndR(P)
op.

• P ∼= HomR(Q,R) and Q ∼= HomS(P,S).

• T(M) ∼= M⊗R P and U(N) ∼= N⊗S Q.

• The functors Hom− S(P, –) and HomR(Q, –) are faithful.

Corollary 3.22. If R and S are Morita equivalent, then K0(R) ∼= K0(S).

Example 3.23 ([1] 2.7.2). For any ring R, Mn(R) is always Morita equivalent to R, so

K0(Mn(R)) ∼= K0(R)

3.3. The Classical Construction of K1. We have seen that K0 classifies fintely generated projective

modules over the ring R. We also recall that higher topological K-groups captured information

about automorphism groups of vector bundles. Therefore, it is tempting to cook up higher

invariants that tells us information about automorphism groups of projective modules. In other

words, we need to understand the general linear group over the ring R.
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Definition 3.24. Let R be an associative unital ring. The general linear group of rank n over R,

denoted GLn(R), is the group of automorphisms of the free module Rn. In matrix form, GLn(R)

consists of n× n invertible matrices with coefficients in R.

Remark 3.25. In the case that R is commutative unital, the determinant makes sense, and GLn(R)

consists of matrices whose determinant equals a unit in R.

Similar to the classical case, there are canonical inclusions of GLn(R) ↪→ GLn+1(R) as the upper

left block: A 7→

 A 0

0 1

. We define the (infinite) general linear group as the colimit of these

inclusions.

Definition 3.26. The general linear group of R is

GL(R) := lim−→GLn(R)

John Milnor in the early 1960s discovered the correct definition for algebraic K1, as the abelian-

ization of GL(R).

Definition 3.27. Let [–, –] denote taking commutators. The first algebraic K-group of the ring R

is defined as follows.

K1R := GL(R)/[GL(R),GL(R)]

It turns out that this commutator subgroup can be explicitly computed as the subgroup gen-

erated by the set of elementary matrices {eij}.

Definition 3.28. Let eij be the elementary matrix whose only none-zero entry is 1 at position

(i, j), for all i, j ∈ N. Define the subgroup of GL(R),

E(R) :=< reij | r ∈ R, i, j ∈ N >

Proposition 3.29.

[GL(R),GL(R)] ∼= E(R)

Also, E(R) is a perfect group because it is equal to its commutator subgroup.

Proposition 3.30.

[E(R),E(R)] ∼= E(R)
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There is a familiar face that appears in the colimit GL(R), namely GL1(R) ∼= R×. Therefore, we

have

Proposition 3.31. K1 always contains the abelianization of the group of units.

R×ab ⊆ K1R

Proposition 3.32 ([1] Proposition 1.6.4). For R,S that are Morita equivalent, we have

K1(R) ∼= K1(S)

3.4. Computing Algebraic K1.

Example 3.33. SK1. If R is commutative unital, then det : GL(R) → R× is a surjective group

hom, and it further induces a surjection det : K1(R) → R×. We write SK1(R) to be the kernel

of K1(R) → R×. Also, observe that the kernel of GL(R) → R× consists of the matrices with

determinant 1, so it is SL(R)! Therefore, we have the following SES

0→ SL(R)→ GL(R)→ R× → 0

which splits by Theorem 3.31.

Therefore,

GL(R) ∼= SL(R)⋊ R×

which induces the direct sum decomposition

K1(R) ∼= R× ⊕ SK1(R)

after abelianization.

Example 3.34 ([1] 1.3.5). Mn(R). The Morita equivalence between R and Mn(R) again induces

K1(Mn(R)) ∼= K1(R)

Example 3.35. Fields. For k a field, SL(k) ∼= [GL(k),GL(k)], which means

K1(k) ∼= k×
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Example 3.36 ([1] 1.3.5). Euclidean domains. For R a Euclidean domain, it can be show that

SK1(R) = 0, whence

K1(R) ∼= R×

As examples, K1(Z) ∼= {±1} and K1(k[x]) ∼= k×.

3.5. The Classical Construction of K2. Beyond K0 and K1, defining higher invariants becomes

extremely difficult. A good definition of algebraic K2 was first given by John Milnor in 1963 and

then refined by Hyman Bass in 1967, which involves the use of Steinberg symbols.

Definition 3.37. Let n ⩾ 3. The Steinberg group Stn(R) is defined via the following generators

{xrij | r ∈ R, 1 ⩽ i ̸= j ⩽ n}

and relations 
xrijx

s
ij = xr+s

ij[
xrij, x

s
jℓ

]
= xrsiℓ if i ̸= ℓ,[

xrij, x
s
kℓ

]
= 1 if i ̸= ℓ and j ̸= k

As usual, the (infinite) Steinberg group is defined as the colimit of STn(R)

The astute reader might have immediately noticed the similarity between the indexing of xrij
and reij. Indeed, all reij satisfy the above relations, so the map sending xrij 7→ reij is a surjective

group hom. K2 is then defined to be the kernel of this homomorphism.

Definition 3.38. Let φ : St(R)→ E(R) be the surjective group hom sending xrij 7→ reij. Then,

K2R := kerφ

We can compose φ with the injection E(R) → GL(R) to get φ̃ : St(R) → GL(R) whose

image equals E(R). We further have the quotient map GL(R) → K1(R) whose kernel equals

[GL(R),GL(R)] = E(R), so these maps fit into the following six-term exact sequence

0→ K2(R)→ St(R)→ GL(R)→ K1(R)→ 0

making K1(R) the cokernel of φ̃.

Recall, for 0 → A → E → G → 0, E is a central extension of G by A if A ⊆ Z(E). Also recall that

central extensions are measured by the second group cohomology.
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Proposition 3.39. Isomorphism classes of central extensions of G by A bijectively correspond to H2(G,A).

A central extension C → G is universal if it is the universal object in the category of central

extensions {E→ G} with morphisms as triangles. It α : C→ G is universal, then kerα ∼= H2(G,Z)

canonically.

Theorem 3.40 ([1] III.5.4, Recognition Theorem). Every perfect group G has a universal central exten-

sion

1→ H2(G;Z)→ [F, F]/[R, F]→ G→ 1

where F is some free group surjecting onto G.

Theorem 3.41 ([1] III.5.5 Kervaire, Steinberg). The surjection St(R) → E(R) is the universal central

extension of E(R). As a consequence,

K2(R) ∼= H2(E(R),Z)

3.6. Computing Algebraic K2. The Steinberg symbols provide an explicit way of computing

algebraic K2, but the computation is still hopeless for many cases.

Definition 3.42 ([1] III.5.10). For A,B ∈ E(R), choose a ∈ φ−1(A) and b ∈ φ−1(B). Then, define

A ⋆ B := [a,b] ∈ K2(R)

Since K2(R) is central in St(R), [a,b] = [a ′,b ′] for different representatives, so the above is

well-defined. Also let diag(–) denote the diagonal matrix with diagonal entries (–). Then, we

are able to construct the Steinberg symbol.

Definition 3.43. Let r, s ∈ R× be commuting elements. The Steinberg symbol {r, s} is defined as

{r, s} := diag(r, r−1, 1) ⋆ diag(s, 1, s−1)

The Steinberg symbol satisfies the following relations:

Proposition 3.44. Whenever defined, the Steinberg symbol satisfies

• {r, s1s2} = {r, s1}+ {r, s2}

• {r1r2, s} = {r1, s}+ {r2, s}

• (Steinberg Relation) {r, 1 − r} = 0
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Let KM
2 (R) be the group generated by {r, s} with the above relations. KM

2 (R) is clearly abelian.

In fact, we can check that all Steinberg symbols are in the kernel of φ, whence KM
2 (R) ⊆ K2(R).

The famous theorem due to Matsumoto Hideyuki shows that these groups are in fact isomorphic

for fields.

Theorem 3.45 (Matsumoto). For a field k, the homomorphism KM
2 (R)→ K2(R) is an isomorphism.
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4. Algebraic K-Theory: Higher K-Groups

K0,K1 and K2 are defined classically purely in terms of algebra. Also, we already know that

for certain R (e.g. a Dedekind domain), then these groups fit into "part of“ a LES,

K2(R)→ K2(Frac(R))→
⊕
m

K1(R/m)→ K1(R)→ K1(Frac(R))→
⊕
m

K0(R/m)→ K0(R)→ K0(Frac(R))

so perhaps we should try to extend the definition to higher degrees. However, it turned out that

coming up with a reasonable definition for the higher K-groups was a serious challenge. Milnor

and others have respectively attempted at the problem in the 70s, but it was not until Daniel

Quillen’s constructions which borrowed ideas from homotopy theory that a widely recognized

definition became available. Later on, Quillen’s constructions began to exhibit real power, and

people were able to extend the definition of K-theory further to other categories.

4.1. Classifying Spaces of a Small Category. The key ingredient to Quillen’s constructions is

one that’s inspired by algebraic topology, namely classifying spaces. It should be thought of as a

representing object in the same sense as a moduli space or a parameter space.

Recall, a small category is one which can be embedded into Sets. In other words, if C is a

small category, then both ob(C) and each HomC(A,B) are sets.

Also recall, a simplicial object in a category C is a contravariant functor ∆op → C. Here, ∆

is the "universal monoidal category“ where objects are [n] and morphisms are order-preserving

functions. (∆ should be thought of as the "infinite“ simplex). In specific, a simplicial set is

a contravariant functor ∆op → Sets. Now, let’s try to build a topological space from a small

category.

Definition 4.1. The Nerve N(C) of a small category C is a simplicial set, where

[n] 7→ {n-composable morphisms in C}

Every simplicial set has a geometric realization obtained by adding an n-simplex ∆n to every

element in the image of [n] and gluing them as a CW-complex according to the face maps and

degeneracy maps of [n].
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Definition 4.2. The classifying space BC of a small category C is the geometric realization of its

nerve N(C). In math notation,

BC := |N(C)|

Recall, a group is equivalent to a small category where there is only one object and morphisms

are group elements. Then, one would naturally concerned of this new definition, because the

classifying space for principal G-bundles has been classically defined as EG/G (recall, EG is the

contractible space with a free G-action). Indeed, these two notions agree.

Proposition 4.3.

|N(G)| ∼= EG/G

Let’s see some examples.

Example 4.4.

BZ ∼= R

BC2 ∼= RP∞
With S∞ understood as a subspace of C∞ and Cn acting by multiplication with roots of unity,

BCn
∼= S∞/Cn

Finally, as we have seen in section 1,

BO ∼= Gr∞
4.2. The Plus Construction and the K-Theory Space KR. We have seen classically that algebraic

K-groups deals with subgroups and extension properties of GL(R), so the right thing to do here

is to for the classifying space BGL(R). Our eventual goal is to define higher algebraic K-groups as

the homotopy groups of some topological space related to BGL(R), and the last missing ingredient

is Quillen’s plus construction.

Definition 4.5 ([1] IV.1.1). The plus construction BGL(R)+ denotes any CW complex X having a

distinguished map from BGL(R)→ BGL(R)+ such that

• π1BGL(R)+ ∼= K1(R), and the natural map GL(R) = π1BGL(R)→ π1BGL(R)+ is surjective

with kernel E(R).

• H•(BGL(R);M) ∼= H•(BGL(R)+;M) for all M ∈ K1(R)Mod.
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As with many of these definitions, multiple models are available, and we mention the following

2:

• Construct BGL(Z)+ by attaching 2 and 3-cells to kill off unwanted homotopy groups, and

let BGL(R)+ be the pushout of BGL(Z)+ along the universal map Z→ R.

• "Group completing“ the H-space BGL(R) to get an infinite loop space. The basepoint

component will be BGL(R)+.

That was quite a detour, but we are now ready to define the higher algebraic K-groups:

Definition 4.6. The higher algebraic K-groups are defined to be the homotopy groups of BGL(R)+.

Kn(R) := πnBGL(R)+

Proposition 4.7. The definition of higher K-groups recovers the classical K-groups.

The map GLn(R)×GLm(S)→ GLmn(R⊗S) induces a map BGL(R)+∧BGL(S)+ → BGL(R⊗S)+

that is well-defined up to weak equivalences. This in turn induces a product on the K-groups,

Kn(R)⊗Km(S)→ Km+n(R⊗S). With the tensor product, the direct sum of all K-groups becomes

a ring.

Definition 4.8. The K-theory ring is

K(R) :=
⊕
n

Kn(R)

with ring operations ⊕ and ⊗.

4.3. The Q Construction and Plus-Equals-Q. Using these ideas, Quillens extended the definition

of K-groups to any exact category.

Definition 4.9. Let C be an exact category. The category QC has object ob(C) and morphisms

HomQC(X, Y) := {X← Z→ Y}

where the first arrow is an admissible epi and the second admissible mono.

Let Ω denote the loop space functor. We can apply homotopy theoretic constructions again

and define the K-groups:
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Definition 4.10. The K-groups of the exact category C are

Ki(C) := πi(ΩBQC)

Theorem 4.11 (+ = Q).

ΩBQProj(R) ≃ K0(R)× BGL(R)+

whence

Kn(R) ∼= Kn(Proj(R))

for all n.

4.4. Mysteries. Algebraic K-theory is largely mysterious and notoriously hard to compute ––

after all, it is based on the computation of homotopy groups! Nevertheless, Quillen famously

computed the K-theory of finite fields, using Adams operations:

Theorem 4.12 (Quillen ’72 [10]).

K2n−1 (Fq) = Z/ (qn − 1) ;K2n (Fq) = 0, where n > 0.

The technique involved has since refused any attempt of generalization.

Assuming the Kummer-Vandiver conjecture (which is a statement about the class numbers of

cyclotomic fields), the K-theory of the integers was computed to be K0(Z) ∼= Z,K1(Z) ∼= Z/2, and

Kn(Z) ∼=



0 if n > 0 and n ≡ 0(mod4)

Z⊕ Z/2 if n ≡ 1(mod8) and n > 1

Z/ck ⊕ Z/2 if n ≡ 2(mod8)

Z/8dk if n ≡ 3(mod8)

Z if n ≡ 5(mod8)

Z/ck if n ≡ 6(mod8)

Z/4dk if n ≡ 7(mod8),

where ck/dk is the Bernoulli number B2k/k in lowest terms and n = 4k− 1 or 4k− 2. We see that

the 8-fold periodicity mysteriously appearing again.
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Finally, the Quillen-Lichtenbaum conjecture posits that K-theory should be a very fine approx-

imation of R using abelian groups. In more precise terms, there should be a SS beginning in the

étale cohomology of SpecR and converging in the K-theory of R. Vladimir Voevodsky proved

this conjecture using techniques from A1-homotopy, for the latter of which he was awarded the

Fields medal.

Theorem 4.13 (Quillen-Lichtenbaum conjecture, proven by Voevodsky). If A is a finitely-generated

Z-algebra and I is prime, then there is a spectral sequence analogous to the Atiyah-Hirzebruch spectral

sequence, starting at

Epq
2 = Hp

etale

(
SpecA

[
ℓ−1] ,Zℓ(−q/2)

)
and abutting to

K−p−qA⊗ Zℓ

for − p− q > 1 + dimA
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5. Where do we go from here?

This is a rather hand-wavy section. See [3] for all references.

We have seen that K-theory does not see through Morita equivalence, meaning it does not see the

original ring at all but just its category of modules. We have also seen Quillen’s Q-construction

extending the definition to exact categories, so it is very tempting to come up with a “minimal”

characterization of when our constructions work. A nice idea is that K-theory is the “universal

machine for additive invariants.” Namely, given a “three-term relation”

0→ A→ C→ B→ 0,

K-theory sees

[C] = [A] + [B].

In other words, if we think of A and B as building blocks, K-theory tells us that [C] is the assembly

of A and B. This allows us to consider many other settings.

Remark 5.1. We ought to use Waldhausen’s s•-construction for these generalizations, but the

ignorant author has been too lazy to delve into it. :(

5.1. Finite Sets. When we apply the s•-construction to the category of finite sets FinSets, we see

that

K0(FinSets) ∼= Z

with the size of a finite set associated to each natural number, and

K1(FinSets) ∼= Z/2

which is precisely the abelianization of the infinite symmetric group (corresponding to the sign

of any permutation). The K-theory space for finite sets is

Ω|s̃•FinSets| ∼= QS0

which is the 0-space of the sphere spectrum S. The homotopy groups of this space is exactly the

stable homotopy groups of spheres. In other words, we recover the most fundamental object of

stable homotopy theory from the K-theory construction over finite sets.
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5.2. Varieties. Let Vark be the category of varieties (not necessarily irreducible!) over k. We can

already apply the K0 construction on varieties. If Y ⊆ X is a closed subvariety, then the three-term

relation we should impose is

[X] = [Y] + [X \ Y].

K0(Vark) is known as the Grothendieck ring of varieties. The Waldhausen s•-construction yields

K(Vark), the K-theory of varieties, where the higher K-groups capture information about groups

of birational automorphisms.

5.3. Commutative Squares. We have been looking at three-term relations in the form of

A ↪→ C ↠ B,

but in many categories, we also see many squares:

A B

C D

In this recent paper [8], Jonathan Campbell et.al. defined the K-construction for four-term rela-

tions

[A] + [D] = [B] + [C]

and proved that the squares K-theory for complete varieties is the same as K(Vark). Lots of cool

stuff!

5.4. Polytopes, Scissors Congruence, Cut-and-Paste Manifolds. Instead of assembling modules,

why don’t we do something much more concrete and assemble polytopes? Even simpler, what

can we say about piecing together polygons in the plane? The classical scissors congruence

problem is the following:

Given two polygons with the same area, can we always divide one into polygonal pieces and reassemble

them to form the other?

If that is possible, then we say that the two polygons are scissors congruent.

The answer for this easiest case is YES, and similar ideas has been lurking around since the time

of the Greeks. The proof was formalized by Gerhard Hessenberg in the early 1900s. Here is the

idea:
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• A polygon always admits a triangulation.

• Two triangles of the same area are always scissors congruent.

Hence, one first subdivide the polygons into an equal number of triangles, do the transformation

on each triangle, and glue everything back together.

What if we go to higher dimensions? Well, the problem becomes difficult already in our familiar

R3, as its name strongly suggests:

Hilbert’s Third Problem: Are two polyhedra in Euclidean 3-space of always scissors congruent if they

have the same volume?

To solve this problem, Max Dehn invented what is now known as the Dehn invariant, and his

answer was NO.

Theorem 5.2 (Dehn-Sydler). Two polyhedra in R3 are scissors congruent iff they have the same volume

and Dehn invariant.

For higher Rn, the situation soon gets out of hand, and the generalized Hilbert’s Third Prob-

lem is still an active area of research. In specific, we can make the following definition which is

analogous to K0:

Definition 5.3. The scissors congruence group P(X,G) where G is a subgroup of the group

of isometries of X, is the free abelian group on symbols [P], for all polytopes in X modulo the

relations (i) [P] − [P′] − [P′′] when P = P′
∐

P′′, (ii) [gP] − [P].

In [9], Inna Zakharevich extended this definition to a full fledged K-theory using what are

called assemblers. It turns out that this construction can be further generalized to cut-and-paste

manifolds, where the correct picture to have in mind is “gluing pairs of pants” in the theory of

cobordisms. This line of thought has apparently received much attention from the quantum field

theory literature, about which the ignorant author knows nothing.

With the above, the author will end this leisurely excursion into the field of algebraic K-theory.
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