
Intersection Theory Notes 05/13

Variations on a Theme of 27 Lines

‘Michael’ Zeng, Ruofan

May 23, 2024

Contents

1 Variation 0: Introduction to 27 Lines . . . . . . . . . . . . . . . . . . . . . 2

1.1 Cubic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Where are the 27 lines? . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Translating the Enumerative Problem . . . . . . . . . . . . . . . . . . . . 9

3 Variation 1: Schubert Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 27 Lines via Schubert Calculus . . . . . . . . . . . . . . . . . . . . . 11

4 Variation 2: Fano Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Definition of a Fano Scheme . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Hilbert Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Tangent Spaces as First Order Deformations . . . . . . . . . . . . . 18

4.4 Geometry of Universal Fano Scheme . . . . . . . . . . . . . . . . . . 25

0



5 Variation 3: Equivariant Integral . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Defining an Equivariant Cohomology Theory . . . . . . . . . . . . . 28

5.2 Classifying Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 The Borel Construction and Borel Equivariant Cohomology . . . . 36

5.4 Equivariant de Rham Theory . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Atiyah-Bott Localization Formula . . . . . . . . . . . . . . . . . . . . 45

5.6 27 Lines via Equivariant Localization . . . . . . . . . . . . . . . . . . 46

6 Variation 8: Grothendieck-Riemann-Roch . . . . . . . . . . . . . . . . . . 51

6.1 The Chern Character . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 The Todd Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Grothendieck-Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . 55

6.4 27 Lines via G-R-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1



1 Variation 0: Introduction to 27 Lines

Throughout this write-up, let k be an algebraically closed field with char k ‰ 2.

1.1 Cubic Surfaces

Definition 1.1. A cubic surface in P3 is a degree 3 hypersurface.

Example 1.2. The Fermat cubic is defined by the homogeneous equation

x3
` y3

` z3
` w3

“ 0.

Figure 1.3: Fermat cubic with affine equation x2 ` y2 ` z2 ` 1 “ 0, plotted in
Desmos 3D.

The Clebsch surface is another smooth cubic surface defined by the following:

x3
` y3

` z3
` w3

“ px ` y ` z ` wq
3.
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Figure 1.4: Clebsch surface.

Cayley’s nodal cubic is a singular cubic surface given by the following:

xyz ` yzw ` zwx ` wxy “ 0.

Figure 1.5: Cayley’s nodal cubic.

We remember that a line in P3 is a codimension 2 subvariety of degree 1, i.e. a

copy of P1.

Theorem 1.6 (Cayley 1848). Every smooth cubic surface in P3 contains exactly

27 distinct lines.

3



Figure 1.7: The 27 distinct lines on the Clebsch cubic, by Greg Egan. https:
//blogs.ams.org/visualinsight/2016/02/15/27-lines-on-a-cubic-surface/

Figure 1.8: A 3D-printed model of the Clebsch cubic with 27 lines on it.

1.2 Where are the 27 lines?

Here, we describe how to locate the 27 lines on any smooth cubic surface.
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Theorem 1.9. Every cubic surface in P3 is isomorphic to P2 blown up at 6 points.

Figure 1.10: Hartshorne’s famous picture of a blow-up.

This fact is reflected in the Hodge diamond of a cubic surface:

1

0 0

0 7 0

0 0

1

where the middle Hodge number h1,1 is 7 “ 1 ` 6, reflecting the fact that we

erect 6 exceptional divisors over P2. One can in fact see all those 7 holes in the 3D

model of the Clebsch cubic! Pieter Belmans (University of Luxembourg) has a nice

interactive tool for computing hodge numbers: https://pbelmans.ncag.info/
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cohomology-tables/. Pieter’s webpage contains many more awesome gadgets,

and we highly recommend that the reader check those out.

Now, each exceptional divisor Ei is obviously a copy of P1, so we have found

6 of the lines. Classical results about the intersection theory on surfaces tells us

that exceptional divisors are (-1)-curves, in the sense that

degrEis
2

“ ´1.

The next big observation is that blowing up at more than one point creates new

(-1)-curves:

Example 1.11. P2 blown up at 2 distinct points, say P1 and P2. Let E1, E2 be the

two exceptional divisors, and let L12 be the line ¯P1P2.

Figure 1.12: P2 blown up at 2 points.

Let l be the line L12 before blowing up. We have

rls2
“ 1 ¨ rpts P A2

pP2
q.
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After blowing up, we see that the divisor l becomes E1 ` E2 ` L12, and as a result,

1 “ degrls2

“ degrE1 ` E2 ` L12s
2

“ degrE1s
2

` rE2s
2

` 2rE1s ¨ rE2s ` 2rL12s ¨ rE1s ` 2rL12s ¨ rE2s ` rL12s
2

“ p´1q ` p´1q ` 2 ¨ 0 ` 2 ¨ 1 ` 2 ¨ 1 ` degrL12s
2

“ 2 ` degrL12s
2.

We see that degrL12s2 “ ´1! Thus, by blowing up, we have created a new

(-1)-curve.

We see that by repeatedly blowing up, we gain a new line through each pair

of blown-up points. Blowing up 6 times, we get another

ˆ

6
2

˙

“ 15

new lines.

Via a very similar argument, it can be shown that the unique conic passing

through 5 of the blown-up points will be a (-1)-curve. Thus, we get another

ˆ

6
5

˙

“ 6.

Combining all the lines we have found together, we obtain the target count

6 ` 15 ` 6 “ 27!

We ought to mention that the configuration of these 27 exhibit an interesting
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symmetry. Namely, the graph of pairwise intersections of these lines is the Schläfli

graph. Its automorphism group is the famous exceptional reflection group E6.

Figure 1.13: The Schläfli graph.

Of course, the real challenge comes from proving that there are always exactly

these 27 distinct lines given any smooth cubic surface. One can be a bit more

ambitious and ask if this count extends to singular cubic surfaces where we need

to count with the correct multiplicities. We are going to do all that with the

machinery of intersection theory.
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2 Translating the Enumerative Problem

We will translate the enumerative problem into the degree calculation of loci in a

suitable parameter space and then verify transversality.

Problem 2.1. How many lines lie on a smooth cubic surface in P3?

The parameter space for lines in P3 is Gp1, 3q, within which we would like to

find the locus of lines contained in a given smooth cubic surface. A smooth (in

fact, any) cubic surface S is given by a homogeneous cubic polynomial F. If S

contains a line l, then every point on l needs to satisfy F “ 0, which just means

F|l “ 0.

Now, the tautological bundle S over Gp1, 3q has fiber l itself over each l. Thus,

the dual of the tautological bundle S_ has fiber l_, the space of linear forms over

l. Then, cubic forms over each l piece together as the symmetric cube bundle

Sym3 S_ over Gp1, 3q. Then, l ÞÑ F|l assigns to each l P Gp1, 3q the cubic form

F|l over l, so F induces a section of the bundle Sym3 S_. Then, the locus where

F|l “ 0 is the same as the vanishing locus of the section l ÞÑ F|l. Since F is taken

generically, the class of the locus of lines contained in S is the same as the class

of the vanishing locus of a generic section of Sym3 S_.

So we have reduced the enumerative problem to finding the vanishing locus

of a generic section of Sym3 S_. We have to make sure that this locus will indeed

have dimension 0, so it becomes a union of points. The stalk of Sym3 S_ at l is

the space of cubic forms over l – P1, i.e.

pSym3 S_
ql – ΓpP1,Op3qq
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as k-vector spaces, the latter of which has dimension 4 (spanned by x3, x2y, xy2, y3).

Thus, Sym3 S_ is a rank 4 bundle over the base Gp1, 3q which is also of dimension

4! This confirms that the vanishing locus of a section is indeed a union of points.

Recall that for a rank-r bundle over X, the ith Chern class ci corresponds to

the degeneracy locus where r ´ i global sections become linearly dependent. In

specific, the top Chern class cr when r “ dim X corresponds to the zero locus

of a generic section. Therefore, we have reduced our enumerative problem to

computing the degree of the top Chern class of a bundle:

Number of lines on a smooth cubic surface “ deg c4pSym3 S_
q.

In the following sections, we will see a number of different ways to do this

computation.
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3 Variation 1: Schubert Calculus

3.1 27 Lines via Schubert Calculus

We know the Chern classes of the dual tautological bundle:

cpS_
q “ 1 ` σ1 ` σ1,1.

According to the splitting principle, we may pretend that S_ splits as a direct

sum of line bundles, say L ‘ M, with total Chern classes cpLq “ 1 ` α and

cpMq “ 1 ` β. Then,

cpS_
q “ cpLqcpMq “ 1 ` α ` β ` αβ

implies

σ1 “ α ` β, σ1,1 “ αβ.

Now,

Sym3 S_
“ L3

‘ pL2
b Mq ‘ pL b M2

q ‘ M3,

so
cpSym3 S_

q “ cpL3
qcpL2

b MqcpL b M2
qcpM3

q

“ p1 ` 3αqp1 ` 2α ` βqp1 ` α ` 2βqp1 ` 3βq

“ p1 ` 3pα ` βq ` 9αβqp1 ` 3pα ` βq ` 2pα ` βq
2

` αβq

“ p1 ` 3σ1 ` 9σ1,1qp1 ` 3σ1 ` 2σ2
1 ` σ1,1q

“ p1 ` 3σ1 ` 9σ1,1qp1 ` 3σ1 ` 2σ2 ` 3σ1,1q.
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In particular,

c4pSym3 S_
q “ 9σ1,1 ¨ 3σ1,1

“ 27σ2,2,

whence

deg c4pSym3 S_
q “ 27!

cf. Eisenbud and Harris 2016. Schubert calculus tells us that there are indeed 27

lines on a cubic surface when counted with correct multiplicities. How do we

make sure that there cannot be double (i.e. unreduced) lines when S is smooth?

For that, we need to introduce the machinery of Fano schemes.
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4 Variation 2: Fano Schemes

Fano schemes are schemes parametrizing lines (and more generally, k-planes)

contained on a hypersurface. They are examples of Hilbert schemes, which

parametrizes flat families of subvarieties with a given Hilbert polynomial.

4.1 Definition of a Fano Scheme

To start off, we consider all degree d hypersurfaces in Pn. Set N “
`n`d

d
˘

´ 1,

so that degree d hypersurfaces (really, homogeneous degree d polynomials in

n ` 1 variables) are parametrized by PN. Then, the incidence correspondence of

k-planes contained in a degree d hypersurface, namely

Φpn, d, kq “

!

pX, Lq P PN
ˆ Gpk, nq | L Ă X

)

cuts out a subvariety of PN ˆ Gpk, nq.

Definition 4.1. The universal Fano scheme of k-planes on hypersurfaces of degree

d in Pn is the subvariety

Φpn, d, kq “

!

pX, Λq P PN
ˆ Gpk, nq | Λ Ă X

)

.

Proposition 4.2. The universal Fano scheme Φ “ Φpn, d, kq Ă PN ˆ G pk, Pnq is

a smooth irreducible variety of dimension

dim Φpn, d, kq “ N ` pk ` 1qpn ´ kq ´

ˆ

k ` d
d

˙

.
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Proof

The dimension of Gpk, nq is pk ` 1qpn ´ kq. The fiber of Φ at a point over

Gpk, nq is the projectivization of the kernel of the restriction map

ΓpPn,Opdqq Ñ ΓpΛ,Opdqq

which has dimension N ´
`k`d

d
˘

. Hence,

dim Φpn, d, kq “ pk ` 1qpn ´ kq ` N ´

ˆ

k ` d
d

˙

.

■

From this, we expect the dimension of the fiber of Φ over PN to be pk ` 1qpn ´

kq ´
`k`d

d
˘

, which is not always positive!

Corollary 4.3. (a) The dimension of any component of the family of k-planes on

any hypersurface of degree d in Pn is at least

φpn, d, kq :“ pk ` 1qpn ´ kq ´

ˆ

k ` d
k

˙

.

(b) If φpn, d, kq ă 0, then the general hypersurface of degree d in Pn contains no

k-planes.

(c) If φpn, d, kq ě 0 and the general hypersurface of degree d contains any k-

planes, then every hypersurface of degree d contains k-planes, and every

component of the family of k-planes on a general hypersurface of degree d has

dimension exactly φpn, d, kq.
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We move on to define the parameter space for lines on a given hypersurface.

Definition 4.4. We define the Fano scheme FkpXq of k-planes on a hypersurface X

using local coordinates. Suppose X is cut out by the homogeneous polynomial g.

For a k-plane Λ α
ÐÝ Pk, choose local homogeneous coordinates z0, . . . , zk so that

we may pull back g and expand in these coordinates:

α˚g “
ÿ

IPp
rks

d q

cIzI .

The coefficients cI are polynomials in local coordinates of Gpk, nq, which we may

take as local equations for FkpXq.

Exercise 4.5. Check that these equations agree on overlaps.

The Fano scheme is smooth and reduced for generic X, but for particular X it

may be singular and non-reduced. (see Eisenbud & Harris pp. 197, 199)

Generalizing our translation exercise in Section 2, all Fano schemes can be

described as the vanishing loci of generic sections, which helps us identify their

classes with top Chern classes.

Proposition 4.6. Let V be an pn ` 1q-dimensional vector space, and let S Ă V b

OG be the tautological rank- pk ` 1q subbundle on the Grassmannian G “ Gpk, PVq

of k-planes in PV – Pn. A form g of degree d on PV gives rise to a global section

σg of Symd S_ whose zero locus is FkpXq, where X is the hypersurface g “ 0.

Thus, when FkpXq has expected codimension
`k`d

k
˘

“ rank
´

Symd S_
¯

in G, we

have

rFkpXqs “ c
pk`d

d q

´

Symd S_
¯

P ApGq.
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Proof

The sheaf morphism V_ b OG Ñ S_ on the stalk at Λ P Gpk, nq sends a

linear form φ to its restriction φ|Λ. This induces another morphism

Symd V_
– ΓpPn,Op1qq Ñ Symd S_

taking a degree d form g to its restriction g|Λ, as desired. ■
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4.2 Hilbert Schemes
Theorem 4.7 (Definition-Proposition of Hilbert Schemes). Let X Ă Pn be

a closed subscheme, and let Ppdq be a polynomial. There exists a unique scheme

HPpXq, called the Hilbert scheme of X for the Hilbert polynomial P, with a flat

family

HPpXq ˆ X Ą Y π
ÝÑ HPpXq

of subschemes of X, called the universal family of subschemes of X with Hilbert

polynomial P, having the following properties:

• The fibers of π all have Hilbert polynomial equal to Ppdq.

• For any flat family

B ˆ X Ą Y 1 π
ÝÑ B

whose fibers have Hilbert polynomial Ppdq, there is a unique morphism α :

B Ñ HPpXq such that Y 1 is equal to the pullback of Y :

Y 1 B ˆHP Y Y

B HP

“

{
π

!α

The Hilbert scheme HPpXq represents the following functor from Schk to Set:

FX,P : B ÞÑ t flat families X ˆ B Ą Y 1
Ñ B of subschemes of X Ă Pn

whose fibers over closed points all have Hilbert polynomial Pu
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Proposition 4.8. There is a natural isomorphism

FX,P – HomSchkp´,HPq.

In these terms, Grassmannians are Hilbert schemes of k-planes in PV, while

Fano schemes are Hilbert schemes of k-planes on X, each with Hilbert polynomial
`d`k

k
˘

.

4.3 Tangent Spaces as First Order Deformations

Recall, we need to verify that the 27 lines are distinct for a smooth cubic surface S.

Since lines on S are points of F1pSq, this is to say that F1pSq contains no double

points. Thus, we need to check that the scheme F1pSq is reduced.

Since F1pSq is zero-dimensional, reducedness is the same as smoothness. In

order to show that F1pSq is smooth for a smooth S, we need to study its tangent

spaces. Thankfully, tangent spaces over a Hilbert scheme have particularly nice

descriptions using the idea of deformations, vastly generalizing the identification

TG – Hom pS ,Qq in the Grassmannians chapter.

Definition 4.9. Let Y Ď X be a subscheme. Let T be a ‘parametrizing’ subscheme

with a distinguished k-point Spec k Ñ T. A deformation of Y in X over T with

distinguished point Spec k is a subscheme Y Ď T ˆ X which is flat over T, whose

fiber over the distinguished point is Y.

Y Y T ˆ X

Spec k T

flat
πT
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A deformation is called a first-order deformation if T looks the spectrum of a

local ring,

Tm :“ Spec Rm “ Spec k rϵ1, . . . , ϵms { pϵ1, . . . , ϵmq
2 .

The scheme Tm is often illustrated as a ‘fuzzy’ point with m ‘infinitesimal

vectors.’ We think of Tm as a model for the Zariski tangent space at a smooth

point on an m-dimensional scheme. This idea has shown up in the ‘sheafy proof’

for the tangent space of a Grassmannian, in the previous set of notes.

The following proposition holds by the universal property of Hilbert schemes.

Proposition 4.10. Let H be the Hilbert scheme of Y in X. Let 0 P Tm denote the

unique closed point. Then, we have the set bijection

{deformations of Y Ă X over Tmu Ð̃Ñ tφ : Tm Ñ H | φp0q ÞÑ Yu.

We can make another identification of first-order deformations:

Proposition 4.11. There is a set bijection between first order deformations and

OY-module morphisms

{deformations of Y Ă X over Tmu Ð̃Ñ HomOY pIY{I2
Y,O‘m

Y q.

Proof

Reduce to the case where X, Y are affine and use the characterization of

flatness over the local ring Rm. (See Eisenbud & Harris pp. 214-215) ■

For the next implication, set m “ 1 so as to recover the alternate definition of
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tangent spaces. Then, Proposition 4.10 specializes as

{deformations of Y Ă X over T1u Ð̃Ñ tφ : T1 Ñ H | φp0q ÞÑ Yu – TrYsH.

Composing the previous two identifications, we conclude the following char-

acterization of tangent spaces to a Hilbert scheme:

Theorem 4.12 (Tangent Space of Hilbert Schemes). Suppose that Y Ă X is a

subscheme of a -scheme X Ă Pn, and let H be the Hilbert scheme of Y. If rYs P H

denotes the point corresponding to Y, then

TrYs{H – Γ
´

HomOY

´

IY{X{I2
Y{X,OY

¯¯

as vector spaces.

One realizes that the Hom term in this formula is in fact the normal bundle of

Y in X:
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Proposition 4.13 (Proposition-Definition of Normal Bundles). Suppose that

Y Ă X are schemes.

(a) If X and Y are smooth varieties then NY{X “ HomOY

`

IY{I2
Y,OY

˘

. For

arbitrary schemes Y Ă X, we define NY{X by this formula.

(b) If Y Ă X Ă W are schemes, and X is locally a complete intersection in W,

then there is a left exact sequence of normal bundles

0 ÝÑ NY{X ÝÑ NY{W
α
ÝÑ NX{W

ˇ

ˇ

ˇ

Y
.

If all three schemes are smooth, then α is an epimorphism.

(c) If Y is a Cartier divisor on X then NY{X “ OXpYq. More generally, if Y is

the zero locus of a section of a bundle E of rank e on X, and Y has codimension

e in X, then

NY{X “ E |Y

For part (c), if Y is a complete intersection of X with divisors on Pn of degrees

di, then we recover our familiar result: NY{X “
À

OX pdiq.

Proof

(a)For any inclusion of subschemes Y Ă X, there is a right exact sequence

involving the cotangent sheaves of X and Y :

IY{X{ I2
Y{X

d
ÝÑ ΩX

ˇ

ˇ

ˇ

Y
ÝÑ ΩY ÝÑ 0,

where d is the map taking the class of a (locally defined) function f P IY{X
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to its differential d f P ΩX|Y. If X and Y are smooth, then Y is locally a

complete intersection in X, so IY{X{I2
Y{X is a locally free sheaf on Y of rank

equal to dim X ´ dim Y “ rank ΩX|Y ´ rank ΩY, i.e. it is of full rank. Thus d

is a monomorphism, and the RES turns into a SES

0 Ñ IY{X{ I2
Y{X

d
ÝÑ ΩX

ˇ

ˇ

ˇ

Y
Ñ ΩY Ñ 0.

Since Y is smooth, ΩY is locally free, so dualizing preserves exactness, and

we get an exact sequence

0 ÐÝ HomOY

´

IY{X{I2
Y{X,OY

¯

ÐÝ TX

ˇ

ˇ

ˇ

Y
ÐÝ TY ÐÝ 0,

where the right-hand map is the differential of the inclusion Y Ă X. Com-

paring with the normal bundle sequence

0 Ñ TY Ñ TX|Y Ñ NY{X Ñ 0,

we conclude that NY{X “ HomOY

`

IY{I2
Y,OY

˘

. Proofs to the other parts are

left as an exercise. ■

Therefore, we can identify the Hom term as the normal bundle and specialize

to Fano schemes. As a corollary to Theorem 4.12, we deduce that the tangent

space to FkpXq at rLs is isomophic to global sections of the normal bundle of L in

X, i.e. normal vector fields along L in X:
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Theorem 4.14 (Tangent Space of Fano Schemes). Suppose that L Ă X is a

k-plane in a smooth variety X Ă Pn, and let rLs P FkpXq be the corresponding point.

The Zariski tangent space of FkpXq at rLs is ΓpNL{Xq.

The result is intuitively plausible if we think of a section of NL{X as providing

a normal vector at each point in X, with a corresponding infinitesimal motion of

X. Eisenbud & Harris has a nice illustration of this idea:

Figure 4.15: An infinitesimal movement of L in X corresponds to a normal vector
field on L.

This also gives us a good criterion for the smoothness of a Fano scheme at a

point.

Corollary 4.16 (Smoothness Test for Fano Schemes). Suppose that L Ă X is

a k-plane in a smooth variety X Ă Pn, and let rLs P FkpXq be the corresponding

point. The dimension of FkpXq at rLs is at most dim Γ
`

NL{X
˘

. Moreover, FkpXq is

smooth at rLs if and only if equality holds.
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Proof

It suffices to check locally. The dimension of the Zariski tangent space is

always greater than or equal to the Krull dimension of the local ring, with

equality if and only if the local ring is regular.

Smooth always implies regular, whereas regular implies smooth if the scheme

is of finite type over a perfect field. FkpXq is of finite type over k “ k̄, which

is perfect, so regular implies smooth. ■

We are now ready to check that for a smooth cubic surface S, F1pSq is reduced.

Proposition 4.17. Let S Ă P3 be a smooth surface of degree d ě 3. If F1pSq ‰ ∅,

then F1pSq is smooth and zero-dimensional, thus everywhere reduced. In particular,

S contains at most finitely many lines, and if d “ 3 then S contains exactly 27

distinct lines.

Proof

Fix L Ď S. We have seen that if degree d ě 3, then S has negative

self-intersection, so NL{S is a line bundle with negative degree. Hence,

dim ΓpNL{Sq “ 0, which agrees with dim F1pSq “ 0. By Corollary 4.16, F1pSq

is reduced, whence we see that all 27 lines suggested by Schubert calculus

are distinct. ■

Needless to say, our reasoning generalizes to higher dimensions:

Proposition 4.18. The Fano scheme of lines on any smooth hypersurface of degree

d ď 3 is smooth and of dimension 2n ´ 3 ´ d. But if n ě 4 and d ě 4, then there

exist smooth hypersurfaces of degree d in Pn whose Fano schemes are singular or of

dimension ą 2n ´ 3 ´ d.
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For example, we can count the number of lines on a degree d “ 2n ´ 3

hypersurface in Pn. In that case, the number is equal to

deg F1pSq “ deg cd`1 Symd S_

of the symmetric power bundle over Gp1, nq. Luckily, this is built into MaCaulay2:

we recommend that the reader try this on their own using this online MaCaulay2

interface! https://www.unimelb-macaulay2.cloud.edu.au/#home

Figure 4.19: Web interface of Macaulay2, with the Schubert package.

The second row in the output suggests that there are 2875 lines on a smooth

quintic threefold in P4.

4.4 Geometry of Universal Fano Scheme

We can be more ambitious and try to understand the class of the universal

Fano scheme Φpn, d, 1q in PN ˆ Gp1, nq. This allows us to answer the following

generalization of the 27 lines problem:
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Problem 4.20. Let
␣

Xt Ă P3(

tPP1 be a general pencil of cubic surfaces, and

consider the locus C Ă Gp1, 3q of all lines L Ă P3 that are contained in some

member of this family. What is the genus of C ? What is the degree of the

surface S Ă P3 swept out by these lines?

Theorem 4.21. The universal Fano scheme Φpn, d, 1q|M of lines on a general m

dimensional linear family M “ Pm of hypersurfaces of degree d in Pn is reduced

and of codimension d ` 1 in the p2n ´ 2 ` mq-dimensional space Pm ˆ Gp1, nq. It

is the zero locus of a section of the rank ´pd ` 1q vector bundle E “ π˚
2 Symd S˚ b

π˚
1OPmp1q on that space, so its class is cd`1pEq.

Corollary 4.22. The class of the universal Fano scheme Φp3, 3, 1q of lines on cubic

surfaces in P3 is

rΦp3, 3, 1qs “ c4

´

π˚
2 Sym3 S˚

b π˚
1OP19p1q

¯

“ 27σ2,2 ` 42σ2,1ζ ` p11σ2 ` 21σ1,1q ζ2
` 6σ1ζ3

` ζ4

If we take a single smooth cubic, then we are restricting this class to a point in

P19, whence we recover the count degrΦp3, 3, 1q|rSss “ deg 27σ2,2 ¨ ζ19 “ 27 again.

Corollary 4.23. If C is the curve of lines on a general pencil of cubic surfaces, then

the degree of C is 42 and the genus of C is 70 .

Proof

deg C “ degrΦs ¨ σ1 ¨ ζ18

“ 42.

■
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See Eisenbud and Harris 2016 for a much more thorough treatment.
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5 Variation 3: Equivariant Integral

In section 2, we saw that the number of lines on a smooth cubic surface can be

translated into the degree calculation

deg c4pSym3 S_
q “

ż

Gp1,3q

c4pSym3 S_
q

where we may identify the degree calculation to the integral over the fundamental

class via the Chow ring – de Rham cohomology isomorphism.

Problem 5.1. If Schubert calculus were never well-understood, then is there

an alternate way to compute this integral?

We observe that the parameter spaces (projective spaces, Grassmannians, etc.)

are highly symmetric —- namely, they all have a dense torus action. Therefore,

it would be nice if we could exploit that symmetry and throw away redundant

information. Thankfully, equivariant integration and its localization package

comes to rescue.

5.1 Defining an Equivariant Cohomology Theory

Say we are given a space X with a group action G ü X, and we would like to

integrate certain cohomology classes over all of X. If we had a theory of integra-

tion that captured this group action, then it is plausible that the amount of work

would significantly reduce.

Well, we have a very well understood theory of ordinary cohomology, so it is

tempting to just apply that to some space related to G ü X. A naive attempt is to
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look at the space of orbits,

X{G “ txG | x P Xu, T “ quetient topology

If the G-action is proper and discontinuous, then X{G has the structure of an

orbifold.

The problem is, these spaces of orbits often contain singularities and therefore

fail to be a manifold, whence singular/de Rham cohomology likely do not apply.

However, that is not to say that these spaces are weird and pathological — in fact,

they appear ubiquitously has singular varieties in algebraic geometry.

Example 5.2. (Kummer surfaces) Kummer surfaces are a family of singular

surfaces which are quotients of T4 by Z{2. The Roman/Steiner surface is a

member of this family, given by the projective equation

px2
` y2

` z2
´ w2

q
2

“ ppz ´ wq
2

´ 2x2
qppz ` wq

2
´ 2y2

q

Homework: Blowing up at the origin, check that the center point is a ordinary

triple point.
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Figure 5.3: Steiner surface in 3D.

Even in cases where X{G is a genuine manifold, H‚pX{Gq often remains wildly

unsatisfactory. Illustrated by the following example, X{G tends to forget both X

and G, let alone remembering G ü X.

Example 5.4. Let X “ S2 and G “ S1 ü S2 by rotation along the z-axis.

Figure 5.5: S1 acts on S2 by rotation along an axis.

The quotient S2{S1 is just the unit interval I, whose cohomology H‚pIq is just

that of a point, since I is contractible. Therefore, we lose all information about

both G and X.

The issue is the usual / geometric quotient is not even ‘as big as’ X itself, so

it is silly to ask it to remember the extra information of G. Instead, we would like

to find a ‘bigger’ space with enough room to store the G-action. It turns out that
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such a space, called the homotopy quotient X{{G, can be constructed using the

classifying space of G.

5.2 Classifying Spaces

The classifying space construction originates in the classification of fiber bundles

with a fixed structure group G. It is a fact that every fiber bundle is a ‘fiber

product’ of the fiber with a principal G–bundle, and the classifying space BG

classifies principal G–bundles. A side product of this construction is a contractible

total space EG with a free G action, which is the essential ingredient for the

homotopy quotient construction.

Definition 5.6. A principal G-bundle P Ñ B is a universal bundle if any principal

G-bundle is the pullback of P Ñ B along some continuous map, and isomorphic

bundles are pullbacks along homotopic maps. The base space B is called a

classifying space of G.

Proposition 5.7. If P Ñ B and P 1 Ñ B 1 are universal principal G-bundles, then

B » B 1.

Proposition 5.8. (Detection of universal bundles) If P Ñ B is a principal G-bundle

and P is contractible, then P Ñ B is a universal bundle.

Since all classifying spaces are homotopy equivalent, we may refer to any one

of these as the classifying space and denote the universal bundle as

EG

BG
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In particular, BG – EG{G, the quotient of EG by the global right action of the

principal G-bundle. Then, every principal G-bundle P Ñ X is the pullback (up to

homotopy) of the classifying map X Ñ BG:

P EG

X BG

{

Furthermore, the following propositions relates the classifying space of a Lie

group G to its closed subgroups.

Proposition 5.9. Suppose G is a Lie group, and H ď G is a closed subgroup such

that G{H » ˚. Then, BG » BH.

Proposition 5.10. Suppose G is a Lie group, and H ď G is a closed Lie subgroup.

Then, if EG Ñ BG – EG{G is the universal G-bundle, then EG Ñ EG{H is the

universal H-bundle.

Therefore, to find the classifying space for each Lie group G, it suffices to

find a principal G-bundle with contractible total space, and that will give us the

classifying spaces for all of its closed Lie subgroups.

As a quintessential example, let’s look at GLpn, Rq, the structure group for

rank-n real vector bundles.

Example 5.11. Let G “ GLpn, Rq. GLpn, Rq ü Σn, the space of n ˆ n real symmet-

ric matrices by conjugation, with isotropy group Opnq. Therefore,

GLpn, Rq{Opnq – Σn
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but Σn – R
npn`1q

2 since each real symmetric matrix is uniquely determined by its

upper-triangular entries. Therefore, it is contractible:

Σn – R
npn`1q

2 » ˚

Hence, the classifying spaces for GLpn, Rq and Opnq are the same!

To find a principal Opnq-bundle with contractible total space, consider the

following spaces:

The (real) Stiefel manifold VnpRkq “ torthogonal n-frames of Rku, topologized

as a subspace of pSk´1qn.

The (real) Grassmannian GrnpRkq “ tn-dimensional linear subspaces of Rku, with

the quotient topology.

VnpRkq Ñ GrnpRkq is a principal Opnq-bundle, where the projection map is

given by taking the span of orthogonal n-frames. Then, it is a fact that every

rank-n vector bundle P Ñ X with base space of dimension k is a pullback of this

bundle:

P VnpRkq

X GrnpRkq

{

Since we would like to classify rank-n vector bundles over ALL base spaces, it

is a common trick to consider the infinite union of these spaces:

The inclusion

... ãÑ Rk ãÑ Rk`1 ãÑ Rk`2 ãÑ ...
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induces

... ãÑ VnpRk
q ãÑ VnpRk`1

q ãÑ VnpRk`2
q ãÑ ...

and

... ãÑ GrnpRk
q ãÑ GrnpRk`1

q ãÑ GrnpRk`2
q ãÑ ...

Taking the colimit along these inclusions, we can define

R8 :“ lim
ÝÑ

k
Rk

VnpR8
q :“ lim

ÝÑ
k

VnpRk
q

and

GrnpR8
q :“ lim

ÝÑ
k

VnpRk
q

endowed with the topology of an infinite union. Then, VnpR8q Ñ GrnpR8q

remains a principal Opnq-bundle, and the shift map on R8,

s : R8
Ñ R8, px0, x1, x2, ...q ÞÑ p0, x0, x1, ...q

induces a contraction VnpR8q » ˚. Therefore, by 5.8, VnpR8q Ñ GrnpR8q is a

universal Opnq-bundle, making GrnpR8q the classifying space of Opnq. Every

principal Opnq-bundle P Ñ X is then the pullback of X Ñ BOpnq – GrnpR8q:

P VnpR8q

X GrnpR8q

{

Example 5.12. A similar argument shows that BUpnq – GrnpC8q, the infinite
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complex Grassmannian.

We know that GLpn, Rq deformation retracts onto Opnq, and GLpn, Cq deformation

retracts onto Upnq via Gramm-Schmidt. By 5.9,

BGLpn, Rq – BOpnq – GrnpR8
q

and

BGLpn, Cq – BUpnq – GrnpC8
q.

Example 5.13. Let GL`pn, Rq be the subgroup of GLpn, Rq with positive deter-

minant. Then, GL`pn, Rq deformation retracts onto SLpn, Rq via straight-line

homotopy and also onto SOpnq via Gramm-Schmidt. By 5.10, we may take the

same total space EOpn, Rq – VnpR8q and quotient out the action by the subgroup.

We get VnpR8q{SOpnq – Gr`
n pR8q, the oriented Grassmannian whose points are

oriented dim-n subspaces of R8. By 5.9, we get

BGL`
pn, Rq – BSLpn, Rq – BSOpnq – Gr`

n pR8
q.

Example 5.14. In particular, consider GLp1, Rq – Rˆ and Op1q – t˘1u – Z{2. The

rank-1 real Stiefel V1pR8q is just norm-1 vectors in R8, so it is S8 :“ lim
ÝÑk Sk. The

rank-1 real Grassmannian is just lines in R8, so it is RP8 :“ lim
ÝÑk RPk. Therefore,

BRˆ
– BZ{2 – RP8.

Similarly, GLp1, Cq – Cˆ and Up1q – S1, the circle group. We have

BCˆ
– BS1

– CP8.
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Exercise 5.15. Q: What are the classifying spaces for the following Lie

groups?

SLpn, Cq, SUpnq, Sppnq, Spinpnq

A:

5.3 The Borel Construction and Borel Equivariant Cohomology

cf. Anderson and Fulton 2023 and Tu 2020. It is a fact that the Cartesian product

of a G–space with another that has a free G-action maintains the freeness of the

action.

Lemma 5.16. If a group G acts on a space E freely, then
:::
no

:::::::
matter

::::
how G acts on

a space M, the diagonal action of G on E ˆ M, g ¨ pe, xq “ pg ¨ e, g ¨ xq, is free.

Furthermore, quotienting by a free and proper action behaves nicely with respect

to taking cohomology:

Example 5.17. G “ Z acts freely and properly on the real line M “ R by transla-

tion: for n P Z and x P R,

n ¨ x “ x ` n.

The orbit space M{G is R{Z “ S1. Its integer cohomology H˚pM{G;Zq “

H˚
`

S1˘ – Zrxs{x2 contains useful information, as opposed to 5.4.

This motivates us to consider replacing the ordinary quotient by the quotient

of a ‘larger’ space, since G acts on EG freely and properly.
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Definition 5.18. For G-spaces E and M, write

E ˆG M :“ E ˆ M{ „

where „ mods out the diagonal action: pe, xq „ pg ¨ e, g ¨ xq for all g P G.

Definition 5.19. Let e ¨ g denote the global right action on EG. For a G-space M,

the homotopy quotient M{{G or equivalently the Borel construction is defined

to be the quotient of EG ˆ M by the diagonal action g ¨ pe, xq “ pe ¨ g´1, g ¨ xq:

M{{G :“ EG ˆG M

One may also recognize the homotopy quotient as the associated fiber bundle

to the principal bundle EG Ñ BG with action G ü M on the model fiber. As so,

it fits into Cartan’s mixing diagram for associated bundles:

EG EG ˆ M M

BG EG ˆG M M{G

π

τ

Cartan’s mixing diagram is commutative, and π being a principal bundle

implies that τ : EG ˆG M Ñ BG is a fiber bundle.

Example 5.20. Let’s consider the action S1 ü S2 in 5.4. We recall that BS1 “ CP8

with total space ES1 “ V1pC8q – S8, so the homotopy quotient is

S2
{{S1

“ S8
ˆS1 S2

and it is a fiber bundle over CP8.
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Definition 5.21. The (Borel) equivariant cohomology of X by G is defined to be

the singular cohomology of the homotopy quotient X{{G :

H‚
GpX; Rq :“ H‚

pX{{G; Rq ,

Remark 5.22. If the G action on X is free, then Borel cohomology indeed agrees

with the singular cohomology of the space of orbits! (Hint: use Cartan’s mixing

diagram.)

Since M{{G is an associated bundle, we need a tool to compute the singular

cohomology of a fiber bundle, given the cohomology of its base and fiber.

Theorem 5.23 (Serre Spectral Sequence). Given a homotopy fiber sequence

F Ñ E Ñ B over a connected topological space B, such that the canonical group

action of the fundamental group π1pBq on the ordinary cohomology of the fiber F

is trivial (for instance, if B is simply connected), then there exists a cohomology

spectral sequence of the form:

Ep,q
2 “ Hp

pB, Hq
pFqq ñ Hp`q

pEq.

Example 5.24. Let’s return to the example S1 ü S2 and calculate its integer coho-

mology. We have determined that the homotopy quotient fits into the following

bundle

S2
Ñ S8

ˆS1 S2
Ñ CP8

We understand the cohomology of the base and the fiber:

H‚
pS2;Zq – Zrxs{x2, |x| “ 2
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and

H‚
pCP8;Zq – Zrus, |u| “ 2

so the E2-page of the Serre spectral sequence is

E2
– H‚

pS2;Zq bZ H‚
pCP8;Zq – Zrx, us{px2

q, |x| “ |u| “ 2.

The E2-page looks like

0 1 2 3 4 5 6 7 8

0

1

2

1 u u2 u3 ¨ ¨ ¨

x ux u2x u3x ¨ ¨ ¨

We see that because the differential dr has direction pr, ´r ` 1q and all gaps on

E2 are even, by a parity argument, no differential ever hits a none-zero class, so

the spectral sequence collaspes on the E2-page. Furthermore, since all of these

modules are free, there are no none-trivial extension problems on the E8-page:

0 1 2 3 4 5 6 7 8

0

1

2

1 u u2 u3 ¨ ¨ ¨

x ux u2x u3x ¨ ¨ ¨
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Thus, we have
H2

S1pS2
q – Z ¨ u ‘ Z ¨ x

H4
S1pS2

q – Z ¨ u2
‘ Z ¨ ux

H2
S1pS2

q – Z ¨ u3
‘ Z ¨ u2x

and so on, so the equivariant cohomology of S2 under rotation is

H‚
S1pS2

q » Zrus ‘ Zrusx, |x| “ |u| “ 2.

Figuring the multiplicative structure is more involved. Section 26.2 in Tu 2020

shows that

H‚
S1pS2;Rq “

Rru, xs
`

x2 ´ u2
˘ , |u| “ |x| “ 2.

Borel cohomology is a generalized cohomology theory.

Proposition 5.25. Borel equivariant cohomology HG is a generalized cohomol-

ogy theory, in the sense that it satisfies the following Eilenberg-Steenrod axioms:

homotopy invariance, excision, additivity, and exactness.

A generalized cohomology is not required to satisfy the dimension axiom, i.e.

H‚ of a point is Z. Therefore, we need to determine its value on a single point.

Proposition 5.26. Let H‚
Gp´;Zq be the equivariant cohomology functor for group

G. Then,

H‚
Gp˚;Zq – H‚

pBG;Zq.
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Proof

By definition,

H‚
Gp˚;Zq – H‚

pEG ˆG ˚;Zq

– H‚
pEG{G;Zq

– H‚
pBG;Zq.

■

Proposition 5.27. For any G-space M, H‚
GpMq is an H‚pBGq-algebra.

Proof

By functoriality, the constant map M Ñ ˚ induces an opposite map HGp˚q Ñ

HGpMq, endowing the latter the structure of a module. ■

Example 5.28. Toric equivariant cohomology. Let G “ T – pS1qk be a torus. To

determine H‚pBT;Zq, we compute

BT “ BpS1
q

k

“ pBS1
q

k

“ pCP8
q

k.

By Künneth theorem (in this case, Künneth isomorphism),

H‚
pBT;Zq “ H‚

ppCP8
q

k;Zq

“ H‚
pCP8;Zq bZ ¨ ¨ ¨ bZ H‚

pCP8;Zq

“ Zru1s bZ ¨ ¨ ¨ bZ Zruks

“ Zru1, . . . , uks!

Thus, for any T-space X, H‚
TpX;Zq is an algebra over the polynomial ring
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Zru1, . . . , uks.

For a detailed treatment of toric equivariant cohomology of Grassmannians,

see Chapter 9 of Anderson and Fulton 2023.

5.4 Equivariant de Rham Theory

Every fact about ordinary cohomology and integration of classes has an exact

analogue in the equivariant world.

Definition 5.29. For a Lie group G, let g be its Lie algebra and g_ be its dual. Let

Sympg_q be the symmetric algebra over g_. Then, define the Cartan complex of

equivariant differential forms to be

ΩGpXq :“ pSympg_
q b ΩXq

G.

The Cartan differential

D : pSym pg_
q b ΩXq

G
Ñ pSym pg_

q b ΩXq
G

is given by

pDαqp´q “ dpαp´qq ´ ιp´qpαp´qq

for α P pSympg_q b ΩXqG, where ι is the interior product.

The Cartan complex is a differential model for HG, because the de Rham

isomorphism holds.
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Theorem 5.30 (Equivariant de Rham Isomorphism). For a compact connected

Lie group G with Lie algebra g and a G-manifold X, there is a graded-algebra

isomorphism between equivariant cohomology and the cohomology of the Cartan

model:

H˚
GpXq » H˚

!

pSym pg_
q b ΩXq

G , D
)

.

Similarly, one can show that the theories of vector bundles and characteristic

classes transfer to the equivariant setting.

Having a well-defined theory of equivariant integration, we would like to

translate every ordinary integral into its equivariant counterpart. We achieve that

via the following commutative diagrams. Whenever X is compact and oriented,

the left diagram of obvious inclusions and projections induces the right diagram

on the level of cohomology:

X ˚ H‚pXq Z

X{{G “ EG ˆG X BG H‚
GpXq H‚pBGq

q

ι
{

b

q˚

p

ι˚ b˚

p˚

Given such, if we wanted to compute an ordinary integral

ż

X
α “ q˚α P Z

then we could proceed as follows: suppose we can pick a lift α̃ of α along ι˚. Then

one can compute the above integral as

b˚p˚α̃,
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which becomes an equivariant integral, now taking values in the polynomial ring

H‚pBGq! In AG, if variety X is proper over Spec k, then he map q is well-defined,

so the same computation follows through.

Remark 5.31. Notice that equivariant integrals output values in a polynomial ring,

instead of giving us numbers. However, magical cancellations usually take place,

and we do end up with a number in the end.

The algebraic geometers in the room are surely feeling worried at this point,

since the constructions for equivariant cohomology so far relies heavily on the

infinite colimit EG which is non-algebraic. Thankfully, as with many other things,

we can use a series of algebraic spaces to approximate the role of EG.

Theorem 5.32 (Approximation Spaces, Ricolfi 2022 Theorem 7.3.1). Let

pEmqmě0 be a family of connected spaces on which G acts freely on the right. Let

ν : N Ñ N be a function such that πi pEmq “ 0 for 0 ă i ă νpmq and such that

limmÑ8 νpmq “ 8. Then, for any left G-action on a space X, there are natural

isomorphisms

Hi
GpXq – Hi

pEm ˆG Xq , i ă νpmq.

Proof

Proof by induction. Set E “ EG. The diagonal action of G on E ˆ Em induces

a commutative diagram

Em ˆ X E ˆ Em ˆ X E ˆ X

Em ˆG X pE ˆ Emq ˆG X E ˆG X

where the vertical maps are the (free) quotient maps, and the horizontal

maps are locally trivial fibre bundles with fibre indicated on top of the
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corresponding arrow. As a consequence of the Leray-Hirsch Lemma, if a fibre

bundle Y Ñ B has Hi (fibre) “ 0 for 0 ă i ď m, then the pullback induces a

natural isomorphism HipBq
»
ÝÑ HipYq for i ď m. (See also Theorem 7.2.15).

Since νpmq goes to infinity as m grows, we can apply the previous statement

to νpmq directly, showing that for all i ă νpmq we have isomorphisms

Hi
pEm ˆ GXq

„
ÝÑ Hi

ppE ˆ Emq ˆ GXq
„

ÐÝ Hi
GpXq

induced by the lower row of the diagram. ■

In fact, these approximation spaces enables us to extend intersection theory to

the equivariant setting. See the following exposition by Edidin and Graham, which

appears as arXiv:alg-geom/9609018: https://arxiv.org/abs/alg-geom/9609018

5.5 Atiyah-Bott Localization Formula

Localization formulae are the payoff for developing this equivariant theory. In

short, they allow us to compute the integrals of cohomology classes solely on the

fixed loci of torus actions.
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Theorem 5.33 (Atiyah-Bott Localization Formula). Denote H‚
Tp˚q by HT. Let

X be a compact smooth manifold equipped with an action of a torus T. Then the

equivariant pushforward along ι : XT ãÑ X induces an isomorphism

ι˚ : H˚
T

´

XT
¯

bH˚
T
HT

„
ÝÑ H˚

TpXq bH˚
T
HT.

Its inverse is given by

ψ ÞÑ
ÿ

αPXT

ι˚αψ

eT pNαq
.

In integral form, we have us, for any equivariant class ψ P H˚
TpXq bH˚

T
HT,

ż

X
ψ “

ÿ

α

qα˚

ι˚αψ

eT pNαq
“
ÿ

α

ż

Fα

ι˚αψ

eT pNαq
P HT.

In particular, if X be a smooth complex projective T–variety with finitely many fixed

points. Then for all ψ P H˚
TpXq there is an identity

ż

X
ψ “

ÿ

qPXT

i˚
q ψ

eT
`

TqX
˘ P HT.

5.6 27 Lines via Equivariant Localization

cf. Ricolfi 2022. With the knowledge of the localization formula, let’s redo the

computation
ż

Gp1,3q

c4pSym3 S_
q.

Both P3 and Gp1, 3q are toric varieties, with torus action inherited from the pCˆq4

action on C4. Let us assume that the weights of this torus action are pw0, . . . , w3q,
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meaning t ¨ xi “ twi xi for t P T.

The torus action on P3 has four fixed points

p0, . . . , p3 “ p1 : 0 : 0 : 0q, . . . , p0 : 0 : 0 : 1q,

with 6 fixed lines

l01, l02, ..., l23

connecting every pair of points. This is reflected by the toric polytope of P3:

Figure 5.34: Toric polytope of P3.

Each of the lines lij are then a toric fixed point on Gp1, 3q. This is reflected by

the moment graph of Gp1, 3q:

Figure 5.35: Moment graph of Gp1, 3q.
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Now, to compute the desired integral, we may push it forward and compute

instead
ż

Gp1,3q

eT
pSym3 S_

q,

for which we may use the localization formula:

ż

Gp1,3q

eT
pSym3 S_

q “
ÿ

ℓij

eT
´

Sym3S_
¯
ˇ

ˇ

ˇ

ℓij

eT
´

TℓijGp1, 3q

¯ .

To calculate the equivariant Euler class of TlijGp1, 3q, we restrict the tautological

sequence

0 Ñ S Ñ OG b V Ñ Q Ñ 0

to the point lij P Gp1, 3q (and assume the two indices other than i, j are h, k), where

it reads

0 Ñ C ¨ txi, xju Ñ V Ñ C ¨ txh, xku Ñ 0.

Then, the action of T has weights wi, wj on lij “ Slij , and weights wh, wk on

lK
ij “ Qlij . Then, via the identification

Tlij G – HompSlij ,Qlijq – S_
ij b Qlij ,

we see that

Tlij G – C ¨ txi b x_
h , xi b x_

k , xj b x_
h , xj b x_

k u,

whence

eT
pTlij Gq “ pwi ´ wkqpwj ´ wkqpwi ´ whqpwj ´ whq P HT.
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On the other hand, we have

Sym3 S_
lij “ Sym3 C ¨ txi, xju

“ C ¨ tx3
i , x2

i xj, xix2
j , x3

j u,

which has torus weights w3
i , w2

i wj, wiw2
j , w3

j , so

eT
´

Sym3S_
¯
ˇ

ˇ

ˇ

lij
“ p3wiq

`

2wi ` wj
˘ `

wi ` 2wj
˘ `

3wj
˘

P HT.

Putting it all together, we have

ÿ

0ďiăjď3

eT
´

Sym3S_
¯

| lij

eT
´

TlijGp1, 3q

¯ “
ÿ

0ďiăjď3

p3wiq
`

2wi ` wj
˘ `

wi ` 2wj
˘ `

3wj
˘

pwi ´ whq
`

wj ´ wh
˘

pwi ´ wkq
`

wj ´ wk
˘

“ 9
w0 p2w0 ` w1q pw0 ` 2w1q w1

pw0 ´ w2q pw0 ´ w3q pw1 ´ w2q pw1 ´ w3q

` 9
w0 p2w0 ` w2q pw0 ` 2w2q w2

pw0 ´ w1q pw0 ´ w3q pw2 ´ w1q pw2 ´ w3q

` 9
w0 p2w0 ` w3q pw0 ` 2w3q w3

pw0 ´ w1q pw0 ´ w2q pw3 ´ w1q pw3 ´ w2q

` 9
w1 p2w1 ` w2q pw1 ` 2w2q w2

pw1 ´ w0q pw1 ´ w3q pw2 ´ w0q pw2 ´ w3q

` 9
w1 p2w1 ` w3q pw1 ` 2w3q w3

pw1 ´ w0q pw1 ´ w2q pw3 ´ w0q pw3 ´ w2q

` 9
w2 p2w2 ` w3q pw2 ` 2w3q w3

pw2 ´ w0q pw2 ´ w1q pw3 ´ w0q pw3 ´ w1q
.

One can check by any computer algebra system or simply plugging in enough

distinct values of w0, . . . , w3 that the above rational function is always equal to 27!
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As an example, evaluating at pw0, . . . , w3q “ p´1, 0, 1, 2q, we have

# Lines on S “ 9p0 ´
1
3

` 0 ` 0 ` 0 `
10
3

q “ 27!
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6 Variation 8: Grothendieck-Riemann-Roch

cf. Eisenbud and Harris 2016. The existence of nice machines like Schubert

calculus and equivariant localization relies on the fact that Grassmannians are

particularly nice parameter spaces. However, these parameter spaces, being

instances of Hilbert schemes, are in essence the representing objects of certain

functors. That we know the geometry and combinatorics of them is arguably a

pure serendipity.

One may ask, what if no mathematician in the world has ever come up with

those nice gadgets? In that case, what might be the last glimmer of hope? Well, we

remember that the universal family of lines over G is the incidence correspondence

Φ “

!

pL, pq P G ˆ P3
| p P L

)

we will let α : Φ Ñ G and β : Φ Ñ P3 be the projection maps. The bundle E is the

direct image of L “ β˚OP3p3q.

G ˆ P3

G P3

E “ α˚β˚OP3p3q OP3p3q

α β

And our goal was to compute c4pSym3 Eq. Namely, we want to compute Chern

classes of a direct image sheaf from scratch. This is done via the Grothendieck-

Riemann-Roch theorem.
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6.1 The Chern Character

So far, we have used total Chern classes for most computations, but it often feels a

little clumsy, since the total Chern class is multiplicative on short exact sequences,

and the tensor product formulae are unwieldy. According to Eisenbud & Harris,

Hirzebruch in the 60s discovered a ring homomorphism from the ‘ring of vector

bundles’ to the Chow group, called the Chern character.

First off, by the ‘ring of vector bundles’ we mean the K-theory ring K0pXq. For

a variety X, the set of finite rank vector bundles VectpXq forms a commutative

monoid under ‘ and b, i.e. it satisfies all axioms of a commutative unital ring,

except for the fact that vector bundles do not have additive inverses. Thus, we

may form the group completion of VectpXq by formally adjoining all differences

E a F , termed virtual vector bundles.

Definition 6.1. For a variety X, the K-theory ring K0pXq is the group completion

of the commutative monoid VectpXq.

For a smooth quasiprojective variety X, ApXq is also a commutative unital ring,

and the Chern character magically defines a ring homomorphism between K0pXq

and ApXq (more precisely, the rationalization of the two).

Definition 6.2 (Chern character). Let E be a vector bundle. Using the splitting

principle, we may write cpEq “
ś

p1 ` αiq. Then, we define the Chern character to

be

ChpEq “
ÿ

eαi .

In other words, the k-th graded piece ChkpEq of the Chern character is

ChkpEq “
ÿ αk

i
k!
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expressed as a polynomial in the elementary symmetric functions of the αi and

applied to the Chern classes cipEq.

Example 6.3. The first few cases are

Ch0pEq “ rankpEq,

Ch1pEq “ c1pEq,

Ch2pEq “
c1pEq2 ´ 2c2pEq

2
.

Proposition 6.4. If X is a smooth quasiprojective variety, then the map

Ch : K0pXq b Q Ñ ApXq b Q

is a ring homomorphism.

In fact, for projective varieties, the following wondrous statement is true.

Theorem 6.5 (Grothendieck). If X is a smooth projective variety, then the map

Ch : K0pXq b Q Ñ ApXq b Q

is an isomorphism of rings.
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6.2 The Todd Class

Definition 6.6. Suppose E is a vector bundle/locally free sheaf of rank n on a

smooth variety X. We formally factor its Chern class by the splitting principle:

cpEq “

n
ź

i“1

p1 ` αiq .

We define the Todd class of E to be

TdpEq “

n
ź

i“1

αi

1 ´ e´αi
,

written as a power series in the elementary symmetric polynomials cipEq of the αi.

Example 6.7. To calculate the first few terms of the Todd class, write so

1 ´ e´α
“ α ´

α2

2
`

α3

6
´

α4

24
` ¨ ¨ ¨ ,

1 ´ e´α

α
“ 1 ´

α

2
`

α2

6
´

α3

24
`

α4

120
´ ¨ ¨ ¨ ;

inverting this, we get

α

1 ´ e´α
“ 1 `

α

2
`

α2

12
´

α4

720
` ¨ ¨ ¨ ,

so

TdpEq “

n
ź

i“1

˜

1 `
αi

2
`

α2
i

12
´

α4
i

720
` ¨ ¨ ¨

¸

.

Rewriting the first few of these in terms of the symmetric polynomials of the

αi-that is, the Chern classes of E -we get formulas for the first few terms of the
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Todd class:
Td0pEq “ 1

Td1pEq “
ÿ αi

2
“

c1pEq

2

Td2pEq “
1

12

ÿ

α2
i `

1
4

ÿ

iăj

αiαj “
c2

1pEq ` c2pEq

12

Td3pEq “
1

24

ÿ

i‰j

αiα
2
j “

c1pEqc2pEq

24

Like the total Chern class, the Todd class is also multiplicative on SES:

Proposition 6.8. For a short exact sequence of vector bundles

0 ÝÑ E 1
ÝÑ E ÝÑ E2

ÝÑ 0,

the Todd classes satisfy

TdpEq “ TdpE 1
q TdpE 2

q.

The reason Todd defined these classes is that they are generalizations of the

Euler characteristic.

Proposition 6.9. Let X be a smooth n-dimensional variety. Then, the Euler

characteristic is recovered as the nth graded piece of the Todd class:

χ pOXq “ deg Tdn pTXq

6.3 Grothendieck-Riemann-Roch

We now have the necessary technology to state Grothendieck-Riemann-Roch.
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Theorem 6.10 (Grothendieck-Riemann-Roch). Consider a proper morphism

f : X Ñ Y between smooth quasi-projective schemes and a bounded complex of

sheaves F‚ on X. We can form the K-theoretic pushforward

f! “
ÿ

p´1q
iRi f˚ : K0pXq Ñ K0pYq

(alternating sum of higher direct images) and the proper pushforward

f˚ : ApXq Ñ ApYq.

Then, the following formula holds:

Ch p f!F‚
q TdpYq “ f˚ pCh pF‚

q TdpXqq .

In other words, the following diagram commutes.

K0pXq ApXqQ

K0pYq ApYqQ

Ch

f!

TdpXq

f˚

Ch

TdpYq

The formula may be thought of as a precise measure of ‘lack of commutativity’

of taking pushforwards, where the correction terms are given by the Todd classes.

The ‘classical’ Hirzebruch-Riemann-Roch formula is then a specialization of G-R-R,

with Y “ pt and k “ C.
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Corollary 6.11 (Hirzebruch-Riemann-Roch). If X is a smooth projective variety

of dimension n and F a coherent sheaf on X, then

χpF q “ deg ChpF q Td pTXq .

We may specialize further to the cases of curves and surfaces, as one typically

sees in an introductory course on algebraic geometry:

Corollary 6.12 (R-R for surfaces). If F is a coherent sheaf on a smooth projective

surface S, then

χpF q “
c1pF q2 ´ 2c2pF q ` c1pF qc1 pTCq

2
` rankpF q

c1 pTSq
2

` c2 pTSq

12

Corollary 6.13 (R-R for curves). If F is a coherent sheaf on a smooth curve C,

then

χpF q “ c1pF q ` rankpF q
c1 pTCq

2

Proof

If we take X “ C and Y “ t˚u a point, then the Grothendieck-Riemann-Roch

formula reads as

ch p f!Eq “ h0
pC, Eq ´ h1

pC, Eq

f˚pchpEq tdpXqq “ f˚ ppn ` c1pEqq p1 ` p1{2qc1 pTCqqq

“ f˚ pn ` c1pEq ` pn{2qc1 pTCqq

“ f˚ pc1pEq ` pn{2qc1 pTCqq

“ d ` np1 ´ gq
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hence,

χpC, Eq “ d ` np1 ´ gq.

■

6.4 27 Lines via G-R-R

Now, let’s try to use the overpowered G-R-R machine to calculate the number of

lines on a smooth cubic surface. Recall that

E “ Sym3 S_.

To compute the Chern classes of E we first observe that the restriction of OLp3q

of L “ β˚OPnp3q to each fiber ΦrLs “ α´1prLsq “ L – P1 is OP1p3q, which has no

higher cohomology. From the theorem on cohomology and base change (Theorem

B.5), it follows that the direct image

E “ α˚L “ α˚ pβ˚OP3p3qq

is locally free, with fiber H0 pOLp3qq at rLs. Because of the vanishing of the higher

cohomology of L on the fiber of α, the higher direct images Riα˚pLq are 0 for

i ą 0, so the Grothendieck Riemann-Roch theorem becomes a formula for the

Chern character of E :

ChpEq “ α˚

´

ChpLq ¨ Td
´

T v
Φ{G

¯¯

.

To evaluate this explicitly requires the following steps:

(a) Describe the Chow ring ApΦq.
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(b) Describe the direct image map α˚ : ApΦq Ñ ApGq.

(c) Calculate the Chern character of L and the Todd class of the relative tangent

bundle T v
Φ{G.

(d) Take the direct image of their product, to arrive at ChpEq.

(e) Finally, convert this back into the Chern classes of E .

(a) We notice that Φ “ PS is the projectivization of the tautological bundle.

We have

Proposition 6.14 (E & H Proposition 9.10). Let G “ Gpk, nq be the Grassman-

nian of k-planes in Pn and Φ Ă G ˆ Pn the universal k-plane as above, with

π : Φ Ñ G and η : Φ Ñ Pn the projection maps. We have then

ApΦq “ ApGqrζs{

´

ζk`1
´ σ1ζk

` σ1,1ζk´1
` ¨ ¨ ¨ ` p´1q

k`1σ1,1,...,1

¯

where ζ P A1pΦq is the tautological class, or equivalently the pullback via η of the

hyperplane class in Pn.

By the above,

ApΦq “ ApGqrζs{

´

ζ2
´ σ1ζ ` σ1,1

¯

where ζ is the hyperplane class of Pn.

(b) let s denote the total Segre class (the formal power series inverse to the

total Chern class). We have

α˚

´

1 ` ζ ` ζ2
` ¨ ¨ ¨

¯

“ spSq “
1

cpSq
“

1
1 ´ σ1 ` σ1,1

“ 1 ` σ1 ` σ2.
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In other words,

α˚ζ “ 1, α˚pζ2
q “ σ1, α˚pζ3

q “ σ2 and α˚pζ4
q “ 0.

(c) To compute the Chern character of L, we first observe that, since the fiber

of the line bundle OPSp1q at a point pL, pq P Φ is the dual of the one-dimensional

vector subspace of C4 corresponding to p, we have

ζ “ c1 pOPSp1qq “ β˚c1 pOP3p1qq

In particular, it follows that

c1pLq “ 3ζ

and so

ChpLq “ 1 ` 3ζ `
9
2

ζ2
`

27
6

ζ3,

since higher powers of ζ vanish.

For the Todd class of the relative tangent bundle, if we denote by U the

tautological line bundle on Φ “ PS , and by Q the tautological quotient bundle,

we have

T v
Φ{G “ U˚

b Q

From the exact sequence

0 ÝÑ U ÝÑ α˚S ÝÑ Q ÝÑ 0
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we see that

c1pQq “ c1 pα˚Sq ´ c1pU q “ ´σ1 ` ζ

and hence

c1

´

T v
Φ{G

¯

“ c1 pU˚
b Qq “ ζ ` c1pQq “ ´σ1 ` 2ζ.

Plugging this into the formula for the Todd class, we have

Td
´

T v
Φ{G

¯

“ 1 `
2ζ ´ σ1

2
`

p2ζ ´ σ1q
2

12
´

p2ζ ´ σ1q
4

720
.

(d) Taking the product of the above Chern character and Todd class, we have

ChpLq Td
´

T v
Φ{G

¯

“ 1`
1
2

p8ζ ´ σ1q `
1

12

´

94ζ2
´ 22σ1ζ ` σ2

1

¯

`
1

12

´

120ζ3
´ 39σ1ζ2

` 3σ2
1 ζ
¯

`
1

720

´

´2668σ1ζ3
` 246σ2

1 ζ2
` 8σ3

1 ζ ´ σ4
1

¯

`
1

720

´

198σ2
1 ζ3

` 24σ3
1 ζ2

´ 3σ4
1 ζ
¯

.

Applying the direct image map found in step (b), we find that by Grothendieck

Riemann-Roch

ChpEq “ 4 ` 6σ1 ` p7σ2 ´ 3σ1,1q ´ 3σ2,1 `
1
3

σ2,2.

(e) Finally, it remains to recover the Chern classes from this Chern character.

We have

c1pEq “ Ch1pEq “ 6σ1

61



and
c2pEq “

1
2

Ch1pEq
2

´ Ch2pEq

“ 18σ2
1 ´ p7σ2 ´ 3σ1,1q

“ 11σ2 ` 21σ1,1.

Similarly,

c3pEq “
1
6

Ch1pEq
3

´ Ch1pEqCh2pEq ` 2Ch3pEq

“ 36σ3
1 ´ 6σ1 p7σ2 ´ 3σ1,1q ´ 6σ2,1

“ 72σ2,1 ´ 24σ2,1 ´ 6σ2,1

“ 42σ2,1,

and, finally, the payoff!

c4pEq “
1

24
Ch1pEq

4
´

1
2

Ch1pEq
2Ch2pEq `

1
2

Ch2pEq
2

` 2Ch1pEqCh3pEq ´ 6Ch4pEq

“ 54σ4
1 ´ 18σ2

1 p7σ2 ´ 3σ1,1q `
1
2

p7σ2 ´ 3σ1,1q
2

´ 36σ1σ2,1 ´ 2σ2,2

“ p108 ´ 72 ` 29 ´ 36 ´ 2qσ2,2

“ 27σ2,2.
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7 Ending Remarks

We have seen in this document 4 ways of computing the number 27 and 1 way of

verifying it. However, this is certainly not the end of the end of the story. One

may ask how this count differs as we take k to be non-algebraically closed, take

the cubic surface S to be singular, etc. An emerging field of research is to enrich

these counting results using A1-homotopy theory. See Brazelton 2023.
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