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1 Variation 0: Introduction to 27 Lines

Throughout this write-up, let k be an algebraically closed field with chark # 2.

1.1 Cubic Surfaces

Definition 1.1. A cubic surface in IP? is a degree 3 hypersurface.

Example 1.2. The Fermat cubic is defined by the homogeneous equation

Py 2w =0.

Figure 1.3: Fermat cubic with affine equation x? + y? +z? + 1 = 0, plotted in
Desmos 3D.

The Clebsch surface is another smooth cubic surface defined by the following:

B+ rwd = (xry+ztrw)d



Figure 1.4: Clebsch surface.

Cayley’s nodal cubic is a singular cubic surface given by the following:

xyz + yzw + zwx + wxy = 0.

Figure 1.5: Cayley’s nodal cubic.
We remember that a line in IP? is a codimension 2 subvariety of degree 1, i.e. a
copy of P1.

Theorem 1.6 (Cayley 1848). Every smooth cubic surface in P? contains exactly

27 distinct lines.



Figure 1.7: The 27 distinct lines on the Clebsch cubic, by Greg Egan. https:
//blogs.ams.org/visualinsight/2016/02/15/27-1ines-on-a-cubic-surface/

Figure 1.8: A 3D-printed model of the Clebsch cubic with 27 lines on it.

1.2 Where are the 27 lines?

Here, we describe how to locate the 27 lines on any smooth cubic surface.


https://blogs.ams.org/visualinsight/2016/02/15/27-lines-on-a-cubic-surface/
https://blogs.ams.org/visualinsight/2016/02/15/27-lines-on-a-cubic-surface/

I Theorem 1.9. Every cubic surface in P is isomorphic to IP? blown up at 6 points.

t#0

Figure 1.10: Hartshorne’s famous picture of a blow-up.

This fact is reflected in the Hodge diamond of a cubic surface:

1
0 0
0 7 0
0 0
1

where the middle Hodge number il is 7 = 1 + 6, reflecting the fact that we
erect 6 exceptional divisors over IP2. One can in fact see all those 7 holes in the 3D
model of the Clebsch cubic! Pieter Belmans (University of Luxembourg) has a nice

interactive tool for computing hodge numbers: https://pbelmans.ncag.info/


https://pbelmans.ncag.info/cohomology-tables/
https://pbelmans.ncag.info/cohomology-tables/

cohomology-tables/. Pieter’s webpage contains many more awesome gadgets,
and we highly recommend that the reader check those out.

Now, each exceptional divisor E; is obviously a copy of IP!, so we have found
6 of the lines. Classical results about the intersection theory on surfaces tells us

that exceptional divisors are (-1)-curves, in the sense that
deg[E;]* = —1.

The next big observation is that blowing up at more than one point creates new

(-1)-curves:

Example 1.11. P2 blown up at 2 distinct points, say P; and P,. Let Eq, E; be the

two exceptional divisors, and let L1, be the line Py P;.

E4

Figure 1.12: IP? blown up at 2 points.
Let I be the line L, before blowing up. We have

1> = 1-[pt] € A*(P?).


https://pbelmans.ncag.info/cohomology-tables/
https://pbelmans.ncag.info/cohomology-tables/
https://pbelmans.ncag.info/cohomology-tables/

After blowing up, we see that the divisor / becomes E; + E; + Ljp, and as a result,

degl!]?

= deg[E; + E3 + L1o]?

= deg[E1]* + [Ea]? + 2[E1] - [Ea] + 2[L1a] - [Ex] + 2[L12] - [E2] + [L1a]?
=(-1)+(-1)+2-0+2-1+2-1+deg[L12]?

deg[le] .

We see that deg[Li2]> = —1! Thus, by blowing up, we have created a new

(-1)-curve.

We see that by repeatedly blowing up, we gain a new line through each pair

of blown-up points. Blowing up 6 times, we get another
6
=15
(2

Via a very similar argument, it can be shown that the unique conic passing

new lines.

through 5 of the blown-up points will be a (-1)-curve. Thus, we get another

9-

Combining all the lines we have found together, we obtain the target count
6+15+6= 2 7'

We ought to mention that the configuration of these 27 exhibit an interesting



symmetry. Namely, the graph of pairwise intersections of these lines is the Schlafli

graph. Its automorphism group is the famous exceptional reflection group Ej.

Figure 1.13: The Schlifli graph.

Of course, the real challenge comes from proving that there are always exactly
these 27 distinct lines given any smooth cubic surface. One can be a bit more
ambitious and ask if this count extends to singular cubic surfaces where we need
to count with the correct multiplicities. We are going to do all that with the

machinery of intersection theory.



2 Translating the Enumerative Problem

We will translate the enumerative problem into the degree calculation of loci in a

suitable parameter space and then verify transversality.

I Problem 2.1. How many lines lie on a smooth cubic surface in P3?

The parameter space for lines in P3 is G(1, 3), within which we would like to
find the locus of lines contained in a given smooth cubic surface. A smooth (in
fact, any) cubic surface S is given by a homogeneous cubic polynomial F. If S
contains a line [, then every point on / needs to satisfy F = 0, which just means
F|; = 0.

Now, the tautological bundle S over G(1, 3) has fiber [ itself over each I. Thus,
the dual of the tautological bundle & has fiber [V, the space of linear forms over
I. Then, cubic forms over each I piece together as the symmetric cube bundle
Sym®SY over G(1,3). Then, | — F|; assigns to each I € G(1,3) the cubic form
F|; over I, so F induces a section of the bundle ‘Sym3 SV. Then, the locus where
F|; = 0 is the same as the vanishing locus of the section | — F|;. Since F is taken
generically, the class of the locus of lines contained in S is the same as the class
of the vanishing locus of a generic section of Sym®SV.

So we have reduced the enumerative problem to finding the vanishing locus
of a generic section of Sym> S. We have to make sure that this locus will indeed
have dimension 0, so it becomes a union of points. The stalk of Sym® SV at [ is

the space of cubic forms over I ~ P}, i.e.

(Sym® S¥), = [(P!,0(3))



as k-vector spaces, the latter of which has dimension 4 (spanned by x2, x?y, xy?, %)
Thus, Sym> SV is a rank 4 bundle over the base G(1,3) which is also of dimension
4! This confirms that the vanishing locus of a section is indeed a union of points.

Recall that for a rank-r bundle over X, the ith Chern class c; corresponds to
the degeneracy locus where r — i global sections become linearly dependent. In
specific, the top Chern class ¢, when r = dim X corresponds to the zero locus
of a generic section. Therefore, we have reduced our enumerative problem to

computing the degree of the top Chern class of a bundle:

Number of lines on a smooth cubic surface = deg c4(Sym®S").

In the following sections, we will see a number of different ways to do this

computation.

10



3 Variation 1: Schubert Calculus

3.1 27 Lines via Schubert Calculus

We know the Chern classes of the dual tautological bundle:
c(SY)=1+401+011.

According to the splitting principle, we may pretend that S splits as a direct
sum of line bundles, say £ ® M, with total Chern classes ¢(£) = 1+ « and
c(M) =1+ B. Then,

c(SY)=c(L)e(M)=1+a+B+ap

implies
0 =«a+ ,3,0'1,1 = Oéﬁ.
Now,
Sym*SY = L3@ (L2 M) @ (L M?) @ M,
SO

c(Sym3 SY) = ¢(L3)c(L2 @ M)c(L @ M?)c(M?)
= (1+3a)(1+2a+B)(1+a+28)(1+3pB)
= (1+3(a+p) +9aB)(1+3(a+B) +2(a+ )+ ap)
= (14301 + 901 1)(1 + 301 + 207 + 011)
= (

1+ 30y + 90’1,1)(1 + 301 + 205 + 30’1,1).

11



In particular,
Cq4 (Sym3 SV) = 90’1,1 : 30’1,1

= 270’2,2 ,
whence
deg cy(Sym3SV) 27'
cf. Eisenbud and Harris . Schubert calculus tells us that there are indeed 27

lines on a cubic surface when counted with correct multiplicities. How do we
make sure that there cannot be double (i.e. unreduced) lines when S is smooth?

For that, we need to introduce the machinery of Fano schemes.

12



4 Variation 2: Fano Schemes

Fano schemes are schemes parametrizing lines (and more generally, k-planes)
contained on a hypersurface. They are examples of Hilbert schemes, which

parametrizes flat families of subvarieties with a given Hilbert polynomial.

4.1 Definition of a Fano Scheme

To start off, we consider all degree d hypersurfaces in P". Set N = (”;’d) -1,
so that degree d hypersurfaces (really, homogeneous degree d polynomials in
n + 1 variables) are parametrized by PV. Then, the incidence correspondence of

k-planes contained in a degree d hypersurface, namely
O(n,d, k) = {(X,L) e PN x G(k,n) | L c x}

cuts out a subvariety of PN x G(k, n).

Definition 4.1. The universal Fano scheme of k-planes on hypersurfaces of degree

d in IP" is the subvariety
(n,d, k) = {(X,A) e PN x G(k,n) | A © x}

Proposition 4.2. The universal Fano scheme ® = ®(n,d, k) = PN x G (k,P") is

a smooth irreducible variety of dimension

dim @(n,d, k) = N + (k + 1)(n — k) — (k;d).

13



Proof
The dimension of G(k,n) is (k+ 1)(n — k). The fiber of ® at a point over

G(k, n) is the projectivization of the kernel of the restriction map

I(P", O(d)) — T(A, O(d))

which has dimension N — (k;;d). Hence,

dim ®(n,d,k) = (k+1)(n —k) + N — (k;d).

|
From this, we expect the dimension of the fiber of ® over PN to be (k + 1)(n —
k) — (¥19), which is not always positive!

Corollary 4.3.  (a) The dimension of any component of the family of k-planes on
any hypersurface of degree d in IP" is at least

o(n,d, k) == (k+1)(n—k) — (k Z d).
(b) If p(n,d, k) < O, then the general hypersurface of degree d in IP" contains no

k-planes.

(c) If p(n,d, k) = 0 and the general hypersurface of degree d contains any k-
planes, then every hypersurface of degree d contains k-planes, and every
component of the family of k-planes on a general hypersurface of degree d has

dimension exactly ¢(n,d, k).

14



We move on to define the parameter space for lines on a given hypersurface.

Definition 4.4. We define the Fano scheme Fi(X) of k-planes on a hypersurface X
using local coordinates. Suppose X is cut out by the homogeneous polynomial g.
For a k-plane A & Pk choose local homogeneous coordinates z, ...,z so that

we may pull back ¢ and expand in these coordinates:

a*g = Z crzl.

e('y)

The coefficients c; are polynomials in local coordinates of G(k, n), which we may

take as local equations for Fi(X).

Exercise 4.5. Check that these equations agree on overlaps.

The Fano scheme is smooth and reduced for generic X, but for particular X it
may be singular and non-reduced. (see Eisenbud & Harris pp. 197, 199)

Generalizing our translation exercise in Section 2, all Fano schemes can be
described as the vanishing loci of generic sections, which helps us identify their

classes with top Chern classes.

Proposition 4.6. Let V be an (n + 1)-dimensional vector space, and let S < V ®
Og be the tautological rank- (k + 1) subbundle on the Grassmannian G = G(k,IPV)
of k-planes in PV = IP". A form g of degree d on PV gives rise to a global section
og of Sym? SV whose zero locus is Fi(X), where X is the hypersurface g = 0.
Thus, when Fi.(X) has expected codimension (k}zd) = rank (Symd SV> in G, we
have

[F(X)] = cpesey (Symd8v> c AG).

15



Proof
The sheaf morphism VY ® Og — SV on the stalk at A € G(k,n) sends a

linear form ¢ to its restriction ¢|5. This induces another morphism
Sym‘ VY ~ T (P",0(1)) — Sym?S"

taking a degree d form g to its restriction g|A, as desired. H

16




4.2 Hilbert Schemes
Theorem 4.7 (Definition-Proposition of Hilbert Schemes). Let X < P" be
a closed subscheme, and let P(d) be a polynomial. There exists a unique scheme

Hp(X), called the Hilbert scheme of X for the Hilbert polynomial P, with a flat

family
Hp(X) x X >V 5 Hp(X)

of subschemes of X, called the universal family of subschemes of X with Hilbert
polynomial P, having the following properties:

e The fibers of 7t all have Hilbert polynomial equal to P(d).

e For any flat family
BxX>) B

whose fibers have Hilbert polynomial P(d), there is a unique morphism « :

B — Hp(X) such that )" is equal to the pullback of Y :

V' —— Bxy, Y ------ N
\ o Hl
B "y Hp

The Hilbert scheme Hp(X) represents the following functor from Schy to Set:

Fx p : B — { flat families X x B > )’ — B of subschemes of X < P"

whose fibers over closed points all have Hilbert polynomial P}

17



Proposition 4.8. There is a natural isomorphism
Fx,p =~ Homgep, (—, Hp).

In these terms, Grassmannians are Hilbert schemes of k-planes in IPV, while

Fano schemes are Hilbert schemes of k-planes on X, each with Hilbert polynomial

("E).

4.3 Tangent Spaces as First Order Deformations

Recall, we need to verify that the 27 lines are distinct for a smooth cubic surface S.
Since lines on S are points of F;(S), this is to say that F;(S) contains no double
points. Thus, we need to check that the scheme F;(S) is reduced.

Since Fi(S) is zero-dimensional, reducedness is the same as smoothness. In
order to show that F;(S) is smooth for a smooth S, we need to study its tangent
spaces. Thankfully, tangent spaces over a Hilbert scheme have particularly nice
descriptions using the idea of deformations, vastly generalizing the identification

TG = Home(S, Q) in the Grassmannians chapter.

Definition 4.9. Let Y < X be a subscheme. Let T be a ‘parametrizing” subscheme
with a distinguished k-point Speck — T. A deformation of Y in X over T with
distinguished point Speck is a subscheme ) < T x X which is flat over T, whose

fiber over the distinguished point is Y.

Y s Tx X

> Y <
| | %

Speck —— T

18



A deformation is called a first-order deformation if T looks the spectrum of a
local ring,

T := Spec Ry, = Speck [61,...,em]/(el,...,em)2.

The scheme T, is often illustrated as a ‘fuzzy’ point with m ‘infinitesimal
vectors.” We think of T, as a model for the Zariski tangent space at a smooth
point on an m-dimensional scheme. This idea has shown up in the ‘sheafy proof’
for the tangent space of a Grassmannian, in the previous set of notes.

The following proposition holds by the universal property of Hilbert schemes.

Proposition 4.10. Let H be the Hilbert scheme of Y in X. Let 0 € Ty, denote the

unique closed point. Then, we have the set bijection
{deformations of Y < X over Tyy} <«— {¢:Tw — H| ¢(0) — Y}.

We can make another identification of first-order deformations:

Proposition 4.11. There is a set bijection between first order deformations and

Oy-module morphisms

{deformations of Y < X over T} <~ Homyp, (Zy /12, og™).

Proof

Reduce to the case where X,Y are affine and use the characterization of

flatness over the local ring R;,. (See Eisenbud & Harris pp. 214-215) u

For the next implication, set m = 1 so as to recover the alternate definition of

19



tangent spaces. Then, Proposition 4.10 specializes as
{deformations of Y = X over T1} < {¢:T1 — H|¢(0)— Y} = Ty H.

Composing the previous two identifications, we conclude the following char-

acterization of tangent spaces to a Hilbert scheme:

Theorem 4.12 (Tangent Space of Hilbert Schemes). Suppose that Y < X is a
subscheme of a -scheme X < IP", and let H be the Hilbert scheme of Y. If [Y] € H

denotes the point corresponding to Y, then

T[Y]/H ~T (%m(f)y <IY/X/I%/X/ Oy))
as vector spaces.

One realizes that the 7277 term in this formula is in fact the normal bundle of

Y in X:

20



Proposition 4.13 (Proposition-Definition of Normal Bundles). Suppose that

Y < X are schemes.

(a) If X and Y are smooth varieties then Nyx = Hormo, (Iy/I%, Oy). For
arbitrary schemes Y < X, we define Ny x by this formula.

(b) If Y < X < W are schemes, and X is locally a complete intersection in W,

then there is a left exact sequence of normal bundles

0 — Ny)x — Nyw = Nyyw v

If all three schemes are smooth, then w is an epimorphism.

(c) If Y is a Cartier divisor on X then Ny x = Ox(Y). More generally, if Y is
the zero locus of a section of a bundle £ of rank e on X, and Y has codimension
ein X, then

Nyx = Ely
For part (c), if Y is a complete intersection of X with divisors on IP" of degrees
d;, then we recover our familiar result: Ny x = @ Ox (d;).

Proof
(a)For any inclusion of subschemes Y c X, there is a right exact sequence

involving the cotangent sheaves of X and Y :

d
IY/X/Ig/X = 0x| — Oy —0,

where d is the map taking the class of a (locally defined) function f € Zy x

21



to its differential df € Qx|,. If X and Y are smooth, then Y is locally a
complete intersection in X, so Zy x /I% /X is a locally free sheaf on Y of rank
equal to dim X —dim Y = rank Qx|, —rank Qy, i.e. it is of full rank. Thus d

is a monomorphism, and the RES turns into a SES
d
0— IY/X/I@X = 0Ox| = Oy —~0.

Since Y is smooth, Qy is locally free, so dualizing preserves exactness, and

we get an exact sequence
0 — Homoy (Tyx/ T, Oy ) «— Tx|, — T —0,

where the right-hand map is the differential of the inclusion ¥ < X. Com-

paring with the normal bundle sequence
0—)7}—)73{|Y—>Ny/x—>0,

we conclude that Ny x = Homo, (Zy /12, Oy). Proofs to the other parts are

left as an exercise. [ |

Therefore, we can identify the Hom term as the normal bundle and specialize
to Fano schemes. As a corollary to Theorem 4.12, we deduce that the tangent
space to F(X) at [L] is isomophic to global sections of the normal bundle of L in

X, i.e. normal vector fields along L in X:

22



Theorem 4.14 (Tangent Space of Fano Schemes). Suppose that L < X is a
k-plane in a smooth variety X < P", and let [L] € Fi(X) be the corresponding point.
The Zariski tangent space of Fi(X) at [L] is T(Np x).

The result is intuitively plausible if we think of a section of N} x as providing
a normal vector at each point in X, with a corresponding infinitesimal motion of

X. Eisenbud & Harris has a nice illustration of this idea:

Figure 4.15: An infinitesimal movement of L in X corresponds to a normal vector
field on L.

This also gives us a good criterion for the smoothness of a Fano scheme at a

point.

Corollary 4.16 (Smoothness Test for Fano Schemes). Suppose that L < X is
a k-plane in a smooth variety X < IP", and let [L] € F(X) be the corresponding
point. The dimension of F(X) at [L] is at most dimT (N x). Moreover, Fi(X) is
smooth at [L] if and only if equality holds.

23



Proof

It suffices to check locally. The dimension of the Zariski tangent space is
always greater than or equal to the Krull dimension of the local ring, with
equality if and only if the local ring is regular.

Smooth always implies regular, whereas regular implies smooth if the scheme
is of finite type over a perfect field. F(X) is of finite type over k = k, which

is perfect, so regular implies smooth. u

We are now ready to check that for a smooth cubic surface S, F;(S) is reduced.

Proposition 4.17. Let S = P2 be a smooth surface of degree d = 3. If F(S) # &,
then Fy(S) is smooth and zero-dimensional, thus everywhere reduced. In particular,
S contains at most finitely many lines, and if d = 3 then S contains exactly 27

distinct lines.

Proof

Fix L < S. We have seen that if degree d > 3, then S has negative
self-intersection, so N /s is a line bundle with negative degree. Hence,
dim (N /s) = 0, which agrees with dim F;(S) = 0. By Corollary 4.16, F;(S)
is reduced, whence we see that all 27 lines suggested by Schubert calculus

are distinct. [

Needless to say, our reasoning generalizes to higher dimensions:

Proposition 4.18. The Fano scheme of lines on any smooth hypersurface of degree
d < 3 is smooth and of dimension 2n —3 —d. But if n > 4 and d > 4, then there
exist smooth hypersurfaces of degree d in IP"* whose Fano schemes are singular or of

dimension > 2n — 3 —d.

24



For example, we can count the number of lines on a degree d = 2n —3

hypersurface in IP”. In that case, the number is equal to
deg F(S) = degcy.1 Sym? SV

of the symmetric power bundle over G(1, n). Luckily, this is built into MaCaulay?2:
we recommend that the reader try this on their own using this online MaCaulay?2

interface! https://www.unimelb-macaulay?2.cloud.edu.au/#home

Macaulay2, version 1.23.0.1 'S
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, Isomorphism, LLLBases, MinimalPrimes, Onlineloc

i1 : loadPackage "Schubert2"

Schubert2

e}
"

ol : Package
i2 : grassmannian = (m,n)-> flagBundle({m+1, n-m})
02 = grassmannian

02 : FunctionClosure

i3 : for n from 3 to 18 do( G=grassmannian(1,n); (S,Q) = G.Bundles; d = 2*n-3; print integral chern symmetricPower(d, dual S))

305093 061
210480374951
210776 836 330 775
289139638 632 755 625
520764738 758 073 845 321

Figure 4.19: Web interface of Macaulay?2, with the Schubert package.

The second row in the output suggests that there are 2875 lines on a smooth

quintic threefold in P4.

4.4 Geometry of Universal Fano Scheme

We can be more ambitious and try to understand the class of the universal
Fano scheme ®(n,d,1) in PN x G(1,n). This allows us to answer the following

generalization of the 27 lines problem:

25


https://www.unimelb-macaulay2.cloud.edu.au/#home

Problem 4.20. Let {X; c 11’3}t p1 be a general pencil of cubic surfaces, and
consider the locus C = G(1,3) of all lines L — IP® that are contained in some
member of this family. What is the genus of C ? What is the degree of the

surface S = IP> swept out by these lines?

dimensional linear family M = IP™ of hypersurfaces of degree d in P" is reduced
and of codimension d + 1 in the (2n — 2 + m)-dimensional space P™ x G(1,n). It
is the zero locus of a section of the rank —(d + 1) vector bundle £ = 75 Sym‘ §* ®

7t; Opn (1) on that space, so its class is ¢;,1(E).

Corollary 4.22. The class of the universal Fano scheme ®(3,3, 1) of lines on cubic

surfaces in IP3 is

[@(3,3,1)] = c4 (n; Sym3 S* ® n;oplgu))

‘ Theorem 4.21. The universal Fano scheme ®(n,d,1)|, of lines on a general m
‘ = 2702, + 420210 + (110 + 2107,1) §* + 601° + C*

If we take a single smooth cubic, then we are restricting this class to a point in

IP'%, whence we recover the count deg[®(3, 3, 1)|(s1] = deg 2702 - g9 = 27 again.
Corollary 4.23. If C is the curve of lines on a general pencil of cubic surfaces, then
the degree of C is 42 and the genus of C is 70 .
Proof
deg C = deg[®] - oy - '8
=42.

26



See Eisenbud and Harris for a much more thorough treatment.
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5 Variation 3: Equivariant Integral

In section 2, we saw that the number of lines on a smooth cubic surface can be

translated into the degree calculation
degcy(Sym3SY) = J c4(Sym3 SV)
G(1,3)

where we may identify the degree calculation to the integral over the fundamental

class via the Chow ring — de Rham cohomology isomorphism.

Problem 5.1. If Schubert calculus were never well-understood, then is there

an alternate way to compute this integral?

We observe that the parameter spaces (projective spaces, Grassmannians, etc.)
are highly symmetric — namely, they all have a dense torus action. Therefore,
it would be nice if we could exploit that symmetry and throw away redundant
information. Thankfully, equivariant integration and its localization package

comes to rescue.

5.1 Defining an Equivariant Cohomology Theory

Say we are given a space X with a group action G G X, and we would like to
integrate certain cohomology classes over all of X. If we had a theory of integra-
tion that captured this group action, then it is plausible that the amount of work

would significantly reduce.

Well, we have a very well understood theory of ordinary cohomology, so it is

tempting to just apply that to some space related to G G X. A naive attempt is to

28



look at the space of orbits,
X/G = {xG | x € X}, T = quetient topology

If the G-action is proper and discontinuous, then X/G has the structure of an

orbifold.

The problem is, these spaces of orbits often contain singularities and therefore
fail to be a manifold, whence singular/de Rham cohomology likely do not apply.
However, that is not to say that these spaces are weird and pathological — in fact,

they appear ubiquitously has singular varieties in algebraic geometry.

Example 5.2. (Kummer surfaces) Kummer surfaces are a family of singular
surfaces which are quotients of T* by Z ;2. The Roman/Steiner surface is a

member of this family, given by the projective equation
( +y* + 22 —w?)® = ((z — w)? — 2x%)((z + w)* — 2y)

Homework: Blowing up at the origin, check that the center point is a ordinary

triple point.
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Figure 5.3: Steiner surface in 3D.

Even in cases where X/G is a genuine manifold, H*(X/G) often remains wildly
unsatisfactory. Illustrated by the following example, X/G tends to forget both X

and G, let alone remembering G G X.

Example 5.4. Let X = $? and G = S' G S2 by rotation along the z-axis.

Figure 5.5: S! acts on S? by rotation along an axis.

The quotient $2/S! is just the unit interval I, whose cohomology H*(1) is just
that of a point, since I is contractible. Therefore, we lose all information about

both G and X.

The issue is the usual / geometric quotient is not even ‘as big as” X itself, so
it is silly to ask it to remember the extra information of G. Instead, we would like

to find a ‘bigger” space with enough room to store the G-action. It turns out that
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such a space, called the homotopy quotient X//G, can be constructed using the

classifying space of G.

5.2 Classifying Spaces

The classifying space construction originates in the classification of fiber bundles
with a fixed structure group G. It is a fact that every fiber bundle is a ‘fiber
product” of the fiber with a principal G-bundle, and the classifying space BG
classifies principal G-bundles. A side product of this construction is a contractible
total space EG with a free G action, which is the essential ingredient for the

homotopy quotient construction.

Definition 5.6. A principal G-bundle P — B is a universal bundle if any principal
G-bundle is the pullback of P — B along some continuous map, and isomorphic
bundles are pullbacks along homotopic maps. The base space B is called a

classifying space of G.

| Proposition 5.7. If P — B and P’ — B’ are universal principal G-bundles, then
B~ B'.

Proposition 5.8. (Detection of universal bundles) If P — B is a principal G-bundle
and P is contractible, then P — B is a universal bundle.

Since all classifying spaces are homotopy equivalent, we may refer to any one

of these as the classifying space and denote the universal bundle as

EG

!

BG
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In particular, BG =~ EG/G, the quotient of EG by the global right action of the
principal G-bundle. Then, every principal G-bundle P — X is the pullback (up to
homotopy) of the classifying map X — BG:

P —— EG
X —— BG
Furthermore, the following propositions relates the classifying space of a Lie

group G to its closed subgroups.

Proposition 5.9. Suppose G is a Lie group, and H < G is a closed subgroup such

that G/H ~ =. Then, BG ~ BH.

Proposition 5.10. Suppose G is a Lie group, and H < G is a closed Lie subgroup.
Then, if EG — BG = EG/G is the universal G-bundle, then EG — EG/H is the

universal H-bundle.

Therefore, to find the classifying space for each Lie group G, it suffices to
find a principal G-bundle with contractible total space, and that will give us the

classifying spaces for all of its closed Lie subgroups.

As a quintessential example, let’s look at GL(n,R), the structure group for

rank-n real vector bundles.

Example 5.11. Let G = GL(n,R). GL(n,R) G X, the space of n x n real symmet-

ric matrices by conjugation, with isotropy group O(n). Therefore,

GL(n,R)/O(n) =~ L,
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n(ntl) . . . . .
but ¥, R 2 since each real symmetric matrix is uniquely determined by its

upper-triangular entries. Therefore, it is contractible:

n(n+1)
2

Yy =R

Hence, the classifying spaces for GL(n,IR) and O(n) are the same!

To find a principal O(n)-bundle with contractible total space, consider the
following spaces:
The (real) Stiefel manifold V,(R¥) = {orthogonal n-frames of R¥}, topologized
as a subspace of (§F~1)",
The (real) Grassmannian Gr,,(R¥) = {n-dimensional linear subspaces of R¥}, with

the quotient topology.

Vu(RF) — Gr,(R¥) is a principal O(n)-bundle, where the projection map is
given by taking the span of orthogonal n-frames. Then, it is a fact that every
rank-n vector bundle P — X with base space of dimension k is a pullback of this

bundle:

P —— V,(RK)
X —— Gry(RF)
Since we would like to classify rank-n vector bundles over ALL base spaces, it
is a common trick to consider the infinite union of these spaces:

The inclusion

o> R REFL o, REH2
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induces

.. = Vu(RF) - V(R — V, (RF42) — .

and

o = Gry(RF) — Gr,(RF1) < Gr,, (RF2) — ...

Taking the colimit along these inclusions, we can define

R := li_n}]Rk
k

Vu(R™) := lim V,,(R¥)
k

and

Gry(R*) := lim V;,(R¥)
k

endowed with the topology of an infinite union. Then, V,(R*) — Gr,(R®)

remains a principal O(n)-bundle, and the shift map on R%,
s : R - R, (xq, x1, X2, ...) — (0, x0, X1, ...)

induces a contraction V,(R*) ~ «. Therefore, by 5.8, V;;(R*) — Gr,(R®) is a
universal O(n)-bundle, making Gr,(IR®) the classifying space of O(n). Every
principal O(n)-bundle P — X is then the pullback of X — BO(n) =~ Gr,(R®):

P —— Vu(R%)
Lm0
X —— Gry(R%)

Example 5.12. A similar argument shows that BU(n) =~ Gr,(C®), the infinite
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complex Grassmannian.
We know that GL(n,R) deformation retracts onto O(n), and GL(n,C) deformation

retracts onto U(n) via Gramm-Schmidt. By 5.9,
BGL(n,R) ~ BO(n) =~ Gr,(R%)

and
BGL(n,C) =~ BU(n) = Gr,(C*).

Example 5.13. Let GL*(n,R) be the subgroup of GL(n,R) with positive deter-
minant. Then, GL*(n,R) deformation retracts onto SL(n,R) via straight-line
homotopy and also onto SO(n) via Gramm-Schmidt. By 5.10, we may take the
same total space EO(n,R) = V},(R™) and quotient out the action by the subgroup.
We get V,,(R%)/SO(n) = Gr,f (R*), the oriented Grassmannian whose points are

oriented dim-n subspaces of R®. By 5.9, we get
BGL"(n,R) ~ BSL(n,R) = BSO(n) = Grf (R®).

Example 5.14. In particular, consider GL(1,R) = R* and O(1) = {+1} =~ Z/2. The
rank-1 real Stiefel V1(R™) is just norm-1 vectors in R™, so it is $% := lim, Sk, The

rank-1 real Grassmannian is just lines in R*, so it is RIP* := li_n)lk RIP*. Therefore,
BR* =~ BZ/2 =~ RIP*.
Similarly, GL(1,C) =~ C* and U(1) = S}, the circle group. We have

BC* ~ BS! ~ CPP™.

35



Exercise 5.15. Q: What are the classifying spaces for the following Lie

groups?

SL(n,C),SU(n),Sp(n), Spin(n)

5.3 The Borel Construction and Borel Equivariant Cohomology

cf. Anderson and Fulton and Tu . It is a fact that the Cartesian product
of a G—space with another that has a free G-action maintains the freeness of the

action.

Lemma 5.16. If a group G acts on a space E freely, then no matter how G acts on

a space M, the diagonal action of Gon E x M,g-(e,x) = (g-e,§ - x), is free.
Furthermore, quotienting by a free and proper action behaves nicely with respect

to taking cohomology:

Example 5.17. G = Z acts freely and properly on the real line M = IR by transla-
tion: forne Z and x € R,

n-x=x+nmn.

The orbit space M/G is R/Z = S'. Its integer cohomology H*(M/G;Z) =

H* (S') = Z[x]/x* contains useful information, as opposed to 5.4.

This motivates us to consider replacing the ordinary quotient by the quotient

of a ‘larger” space, since G acts on EG freely and properly.
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Definition 5.18. For G-spaces E and M, write
ExgM:=Ex M/~

where ~ mods out the diagonal action: (¢, x) ~ (¢-¢,¢-x) forall g€ G.

Definition 5.19. Let e - ¢ denote the global right action on EG. For a G-space M,
the homotopy quotient M//G or equivalently the Borel construction is defined
to be the quotient of EG x M by the diagonal action g - (¢,x) = (e- g™, g - x):

M//G :=EG xgM

One may also recognize the homotopy quotient as the associated fiber bundle
to the principal bundle EG — BG with action G G M on the model fiber. As so,

it fits into Cartan’s mixing diagram for associated bundles:

EG+—EGxM —— M

I J |

BG +*— EGxgM —— M/G

Cartan’s mixing diagram is commutative, and 7t being a principal bundle

implies that 7 : EG xg M — BG is a fiber bundle.

Example 5.20. Let’s consider the action S! G S? in 5.4. We recall that BS! = CIP*
with total space ES! = V;(C*) =~ S*, so the homotopy quotient is

S2//S! = 8% %1 §?
and it is a fiber bundle over CP®.
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Definition 5.21. The (Borel) equivariant cohomology of X by G is defined to be
the singular cohomology of the homotopy quotient X//G :

HE(X;R) := H* (X//GiR),

Remark 5.22. 1f the G action on X is free, then Borel cohomology indeed agrees
with the singular cohomology of the space of orbits! (Hint: use Cartan’s mixing

diagram.)

Since M//G is an associated bundle, we need a tool to compute the singular

cohomology of a fiber bundle, given the cohomology of its base and fiber.

Theorem 5.23 (Serre Spectral Sequence). Given a homotopy fiber sequence
F — E — B over a connected topological space B, such that the canonical group
action of the fundamental group 7t1(B) on the ordinary cohomology of the fiber F
is trivial (for instance, if B is simply connected), then there exists a cohomology

spectral sequence of the form:
EN" = HP (B, H(F)) = HP™(E).

Example 5.24. Let’s return to the example S! G S? and calculate its integer coho-
mology. We have determined that the homotopy quotient fits into the following
bundle

S2 8% %6 G2 — CPP*

We understand the cohomology of the base and the fiber:
H*(S*Z) =~ Z[x]/x%,|x| = 2
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and

H*(CP*;Z) = Z[u], |u| = 2

so the Ep-page of the Serre spectral sequence is
E? ~ H*(S%Z) @7 H*(CP™; Z) = Z[x,u]/(x?),|x| = |u| = 2.

The E;-page looks like

2 | X ux ulx udx
X TN T T T
0 1 u uz u3

0 1 2 3 4 5 6 7 8

We see that because the differential d, has direction (r, —r + 1) and all gaps on
E, are even, by a parity argument, no differential ever hits a none-zero class, so
the spectral sequence collaspes on the E;-page. Furthermore, since all of these

modules are free, there are no none-trivial extension problems on the E,.-page:

2 | «x ux u’x udx
1
0|1 u u? u3
0 1 2 3 4 5 6 7 8
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Thus, we have
Hél(Sz) ~Z ud”Z- -x

Hgl(Sz) ~Z D7 ux
HH(S) =Z weZ u’x

and so on, so the equivariant cohomology of S? under rotation is
;1(52) ~ Zu|®Z|u]x, |x|=|u|=2.

Figuring the multiplicative structure is more involved. Section 26.2 in Tu

shows that

R[u, x|
)’

Borel cohomology is a generalized cohomology theory.

q(SER) = u| = |x| = 2.

Proposition 5.25. Borel equivariant cohomology Hg is a generalized cohomol-
ogy theory, in the sense that it satisfies the following Eilenberg-Steenrod axioms:

homotopy invariance, excision, additivity, and exactness.
A generalized cohomology is not required to satisfy the dimension axiom, i.e.
H* of a point is Z. Therefore, we need to determine its value on a single point.

Proposition 5.26. Let HZ.(—; Z) be the equivariant cohomology functor for group
G. Then,
H¢(xZ) =~ H*(BG; Z).
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Proof
By definition,
H¢ (% Z) =~ H*(EG xg % Z)

~ H*(EG/G;Z)
~ H*(BG;Z).

I Proposition 5.27. For any G-space M, HZ (M) is an H*(BG)-algebra.

Proof
By functoriality, the constant map M —  induces an opposite map Hg(*) —

Hg (M), endowing the latter the structure of a module. |

Example 5.28. Toric equivariant cohomology. Let G = T = (S)¥ be a torus. To

determine H*(BT;Z), we compute

BT = B(S")
= (BS")*
= (CP™)~.

By Kiinneth theorem (in this case, Kiinneth isomorphism),

H*(BT;Z) = H*((CP®); Z)
= H*(CP*;Z)®z - - ®z H*(CP*; Z)
= Z[n|®z - @z Z[u]
=Zluy, ..., ul!

Thus, for any T-space X, H7(X;Z) is an algebra over the polynomial ring
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Z[Lll,. . .,Mk].

For a detailed treatment of toric equivariant cohomology of Grassmannians,

see Chapter 9 of Anderson and Fulton

5.4 Equivariant de Rham Theory

Every fact about ordinary cohomology and integration of classes has an exact

analogue in the equivariant world.

Definition 5.29. For a Lie group G, let g be its Lie algebra and g" be its dual. Let
Sym(g" ) be the symmetric algebra over g¥. Then, define the Cartan complex of

equivariant differential forms to be
OG(X) := (Sym(g”) ® Ox)°.
The Cartan differential
D: (Sym(g*)®Qx)" — (Sym(g”) ® Qx)°

is given by
(Da)(=) = d(a(=)) =y (a(=))

for & € (Sym(g¥) ® Qx)C, where ! is the interior product.

The Cartan complex is a differential model for Hg, because the de Rham

isomorphism holds.
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Theorem 5.30 (Equivariant de Rham Isomorphism). For a compact connected
Lie group G with Lie algebra g and a G-manifold X, there is a graded-algebra
isomorphism between equivariant cohomology and the cohomology of the Cartan

model:

Hy(X) ~ H* {(Sym (g) ©0x)%, D

Similarly, one can show that the theories of vector bundles and characteristic
classes transfer to the equivariant setting.

Having a well-defined theory of equivariant integration, we would like to
translate every ordinary integral into its equivariant counterpart. We achieve that
via the following commutative diagrams. Whenever X is compact and oriented,
the left diagram of obvious inclusions and projections induces the right diagram

on the level of cohomology:

X 7 o H(X) +——— Z
Ll ’ lb — S I*T Tb*
X//G = EG xg X —— BG He(X) +—— H*(BG)

Given such, if we wanted to compute an ordinary integral

Jazq*an
X

then we could proceed as follows: suppose we can pick a lift & of a along /*. Then

one can compute the above integral as

b*p.&,
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which becomes an equivariant integral, now taking values in the polynomial ring
H*(BG)! In AG, if variety X is proper over Speck, then he map g is well-defined,
so the same computation follows through.
Remark 5.31. Notice that equivariant integrals output values in a polynomial ring,
instead of giving us numbers. However, magical cancellations usually take place,
and we do end up with a number in the end.

The algebraic geometers in the room are surely feeling worried at this point,
since the constructions for equivariant cohomology so far relies heavily on the
infinite colimit EG which is non-algebraic. Thankfully, as with many other things,

we can use a series of algebraic spaces to approximate the role of EG.

Theorem 5.32 (Approximation Spaces, Ricolfi Theorem 7.3.1). Let
(Em) =0 be a family of connected spaces on which G acts freely on the right. Let
v :IN — N be a function such that t; (E,;) = 0 for 0 < i < v(m) and such that
limy, oo v(m) = oo. Then, for any left G-action on a space X, there are natural
isomorphisms

HL(X) = H (Ey xg X), i <v(m).

Proof
Proof by induction. Set E = EG. The diagonal action of G on E x E;;, induces

a commutative diagram

EnxX+—ExE;xX — ExX

! ! l

EnxgX «— (ExEy) xgX —— ExgX

where the vertical maps are the (free) quotient maps, and the horizontal

maps are locally trivial fibre bundles with fibre indicated on top of the
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corresponding arrow. As a consequence of the Leray-Hirsch Lemma, if a fibre
bundle Y — B has H' (fibre) = 0 for 0 < i < m, then the pullback induces a
natural isomorphism Hi(B) = H(Y) for i < m. (See also Theorem 7.2.15).
Since v(m) goes to infinity as m grows, we can apply the previous statement

to v(m) directly, showing that for all i < v(m) we have isomorphisms
H' (Ey x X) = H' ((E x Ep) x 6X) <— H5(X)

induced by the lower row of the diagram. u

In fact, these approximation spaces enables us to extend intersection theory to
the equivariant setting. See the following exposition by Edidin and Graham, which

appears as arXiv:alg-geom/9609018: https://arxiv.org/abs/alg-geom/9609018

5.5 Atiyah-Bott Localization Formula

Localization formulae are the payoff for developing this equivariant theory. In
short, they allow us to compute the integrals of cohomology classes solely on the

fixed loci of torus actions.
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Theorem 5.33 (Atiyah-Bott Localization Formula). Denote H}(+) by Hr. Let
X be a compact smooth manifold equipped with an action of a torus T. Then the

equivariant pushforward along 1 : XT < X induces an isomorphism
. * T ~ *
Ly - HT <X ) ®H$ Hr — HT(X) ®H¥ Hr.

Its inverse is given by

Ly
P Z eT (N,)'

aeXT

In integral form, we have us, for any equivariant class € Hy(X) Qpz Hr,

JXIP N Za:q“*e;

A L
Na) - Z,X]L,X el (Ny)

In particular, if X be a smooth complex projective T—variety with finitely many fixed

points. Then for all € H(X) there is an identity

f Z eT Tq Hr.

5.6 27 Lines via Equivariant Localization

cf. Ricolfi . With the knowledge of the localization formula, let’s redo the

computation

J c4(Sym> SV).
G(13)

Both P and G(1,3) are toric varieties, with torus action inherited from the (C*)*

action on C*. Let us assume that the weights of this torus action are (wy, ..., ws),
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meaning t- x; = tYix; forte T.

The torus action on IP? has four fixed points
po,.--,p3=(1:0:0:0),...,(0:0:0:1),

with 6 fixed lines

lo1, Loz, s 123

connecting every pair of points. This is reflected by the toric polytope of P3:

P1

Po
P2

P3

Figure 5.34: Toric polytope of IP3.

Each of the lines [;; are then a toric fixed point on G(1,3). This is reflected by
the moment graph of G(1, 3):

Figure 5.35: Moment graph of G(1, 3).
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Now, to compute the desired integral, we may push it forward and compute

instead
f eT(Sym3 SY),
G(1,3)

for which we may use the localization formula:

To calculate the equivariant Euler class of TlijG(l, 3), we restrict the tautological
sequence

0-8->0c0V—->090—-0

to the point /;; € G(1,3) (and assume the two indices other than i, j are £, k), where
it reads

0—>C-{xi,x]-} —>V—>C-{xh,xk} — 0.

Then, the action of T has weights w;, w; on Il;; = &;.. , and weights wy, wx on
) ] ij

- = 9, . Then, via the identification
1] 11]
TlijG = Hom(Slij, Qll,],) = Si}'/ ® Qlij’

we see that

T,G=C{xi®x, 5, Qx, ;@ xy , X; @ x¢},

whence

¢! (T1,G) = (w; — wy) (w; — we) (w; — wy)(wj — wy,) € Hr.
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On the other hand, we have
Sym? Sl,-v]- = Sym>C - {x;, Xi}
=C- {xf,xlzx]-, xisz,x?},

which has torus weights w?, w?wj, wlw w] ,

= (Buwy) (2wi + wy) (w; + 2wy) (3wy) € Hr.

1

T (Sym3 8v>
Putting it all together, we have

T (Syl’n38\/> | 11] B (3wi) (Zwi + ZU]) (ZUI' + 2w]) (3w])

o<i<j<3 €' (TlijG(1/3)> o<izj<s (Wi = wx) () = wy) (w; — wy) () — wy)

wo (2Qwo + w1)
(wo — w2) (wo — w3)

(wo + 2w1) w1
(w1

=7 ws) (wl w3)
2

L9 wo (2wg + wo) (wo + 2wy) w

(wo —w1) (wo — w3) (w2 — wy) (wz — w3)
49 wo (2ZU() + ZU3) (ZU() + 2ZU3) w3

(wo — w1) (wo — wa) (w3 — w1) (w3 — W)
L9 w1 Qw1 + wy) (wy + 2wy) wy

(w1 —wo) (w1 — w3) (w2 — wy) (w2 — w3)
L9 w1 (2w1 + ws) (w1 + 2ws) ws

(w1 — wo) (w1 — wa) (w3 — wo) (W3 — w2)
49 wa (2ZU2 + ZU3) (ZUZ + 2ZU3) w3

(wa —wo) (wz — w1) (w3 — wo) (w3 — w1)

One can check by any computer algebra system or simply plugging in enough

distinct values of wy, ..., w3 that the above rational function is always equal to 27!
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As an example, evaluating at (wy, ..., w3) = (—1,0,1,2), we have

1 1
#LinesonS:9(0—§+0+O+0+?O)=27!
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6 Variation co: Grothendieck-Riemann-Roch

cf. Eisenbud and Harris . The existence of nice machines like Schubert
calculus and equivariant localization relies on the fact that Grassmannians are
particularly nice parameter spaces. However, these parameter spaces, being
instances of Hilbert schemes, are in essence the representing objects of certain
functors. That we know the geometry and combinatorics of them is arguably a
pure serendipity.

One may ask, what if no mathematician in the world has ever come up with
those nice gadgets? In that case, what might be the last glimmer of hope? Well, we

remember that the universal family of lines over G is the incidence correspondence
CDz{(L,p)erlPE‘\peL}

we will let « : ® — G and B : ® — IP? be the projection maps. The bundle £ is the
direct image of £ = B*Ops(3).

And our goal was to compute c4(Sym® £). Namely, we want to compute Chern
classes of a direct image sheaf from scratch. This is done via the Grothendieck-

Riemann-Roch theorem.
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6.1 The Chern Character

So far, we have used total Chern classes for most computations, but it often feels a
little clumsy, since the total Chern class is multiplicative on short exact sequences,
and the tensor product formulae are unwieldy. According to Eisenbud & Harris,
Hirzebruch in the 60s discovered a ring homomorphism from the ‘ring of vector
bundles’ to the Chow group, called the Chern character.

First off, by the ‘ring of vector bundles” we mean the K-theory ring Ky(X). For
a variety X, the set of finite rank vector bundles Vect(X) forms a commutative
monoid under ® and ), i.e. it satisfies all axioms of a commutative unital ring,
except for the fact that vector bundles do not have additive inverses. Thus, we
may form the group completion of Vect(X) by formally adjoining all differences

E © F, termed virtual vector bundles.

Definition 6.1. For a variety X, the K-theory ring Ky (X) is the group completion

of the commutative monoid Vect(X).

For a smooth quasiprojective variety X, A(X) is also a commutative unital ring,
and the Chern character magically defines a ring homomorphism between Ky (X)

and A(X) (more precisely, the rationalization of the two).

Definition 6.2 (Chern character). Let £ be a vector bundle. Using the splitting
principle, we may write ¢(£) = [ [ (1 + «;). Then, we define the Chern character to
be

Ch(&) = > e,

In other words, the k-th graded piece Chy(£) of the Chern character is

ak
Ch(€) = D 71
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expressed as a polynomial in the elementary symmetric functions of the «; and

applied to the Chern classes c;(£).

Example 6.3. The first few cases are

Cho(€) = rank(&),

Chl(g) = 61(5),

c1(€)* —26(€)
5 :

Chy(€) =

Proposition 6.4. If X is a smooth quasiprojective variety, then the map

Ch : Ky(X)®Q — A(X)®Q

is a ring homomorphism.

In fact, for projective varieties, the following wondrous statement is true.

Theorem 6.5 (Grothendieck). If X is a smooth projective variety, then the map

Ch : Ko(X)®Q — A(X)®Q

is an isomorphism of rings.
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6.2 The Todd Class

Definition 6.6. Suppose & is a vector bundle/locally free sheaf of rank 7 on a

smooth variety X. We formally factor its Chern class by the splitting principle:

c(&) :ﬁ(lJroci).

i=1

We define the Todd class of £ to be

n
“.
T =1 =
i=1

written as a power series in the elementary symmetric polynomials ¢;(£) of the «;.

Example 6.7. To calculate the first few terms of the Todd class, write so

2 3 4
o o o
loe Y= — — 4+ — — ...
e o 5 + G 24+ ,
1—(3_"‘_1 tx+¢x2 oc3+ al '
X 2 6 24 120 ’
inverting this, we get
o _1+1x+{x2_ ot N
1—e 2 12 720 ’

SO
n 2 4
PR %
T = 1T+ L4 L L 4.,
(&) H( T2 12 720" >
Rewriting the first few of these in terms of the symmetric polynomials of the

a;-that is, the Chern classes of £-we get formulas for the first few terms of the
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Todd class:

Tdo(€) =1
a, c1(&
Tdi(€) =), 5 = 1(2)

1 1 2(&E) + (€
sz(5)=ﬁ2a$+zzmj:%
Z<]

1 c1(E)er(E
Tds(€) = 57 D, wief = %
i#]

Like the total Chern class, the Todd class is also multiplicative on SES:

Proposition 6.8. For a short exact sequence of vector bundles

0—& —E&—E&—0,

the Todd classes satisfy
Td(E) = TA(E) TA(E").

The reason Todd defined these classes is that they are generalizations of the

Euler characteristic.

Proposition 6.9. Let X be a smooth n-dimensional variety. Then, the Euler

characteristic is recovered as the nth graded piece of the Todd class:

X (Ox) = degTd, (Tx)

6.3 Grothendieck-Riemann-Roch

We now have the necessary technology to state Grothendieck-Riemann-Roch.
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Theorem 6.10 (Grothendieck-Riemann-Roch). Consider a proper morphism
f + X — Y between smooth quasi-projective schemes and a bounded complex of

sheaves F* on X. We can form the K-theoretic pushforward
fi=DU=1)Rifs : Ko(X) — Ko(Y)
(alternating sum of higher direct images) and the proper pushforward
frt A(X) = A(Y).
Then, the following formula holds:
Ch(fiF°)Td(Y) = f« (Ch(F*)Td(X)).

In other words, the following diagram commutes.

Td(X)
Ko(X) —< A(X)q
f-l lf*
Ko(Y) —— A(Y)g

Td(Y)

The formula may be thought of as a precise measure of ‘lack of commutativity’
of taking pushforwards, where the correction terms are given by the Todd classes.
The “classical” Hirzebruch-Riemann-Roch formula is then a specialization of G-R-R,

with Y = ptand k = C.
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Corollary 6.11 (Hirzebruch-Riemann-Roch). If X is a smooth projective variety

of dimension n and F a coherent sheaf on X, then
X(F) = degCh(F)Td (Tx) .
We may specialize further to the cases of curves and surfaces, as one typically

sees in an introductory course on algebraic geometry:

Corollary 6.12 (R-R for surfaces). If F is a coherent sheaf on a smooth projective

surface S, then

a1 (T5)* + 2 (Ts)
12

c1(F)? = 2¢3(F) + c1(F)er (Te)
X(F) = > + rank(F)

Corollary 6.13 (R-R for curves). If F is a coherent sheaf on a smooth curve C,

then
c1(Tc)

X(F) = c1(F) + rank(F) >

Proof
If we take X = C and Y = {+} a point, then the Grothendieck-Riemann-Roch

formula reads as

ch (fiE) = h°(C,E) — h'(C,E)
f(ch(E)td(X)) = fu ((n + c1(E)) (1 + (1/2)c1 (Tc)))
(
(

fs(n+c1(E) + (n/2)c1 (Tc))
fi (c1(E) + (n/2)e1 (Tc))
d+n(l-g)

l
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hence,

X(C,E)=d+n(l-g).

6.4 27 Lines via G-R-R

Now, let’s try to use the overpowered G-R-R machine to calculate the number of

lines on a smooth cubic surface. Recall that
£ =Sym’>S".

To compute the Chern classes of £ we first observe that the restriction of O (3)
of L = B*Opn(3) to each fiber ;) = a~1([L]) = L =~ P! is Op1(3), which has no
higher cohomology. From the theorem on cohomology and base change (Theorem

B.5), it follows that the direct image
E=w.L=uw,(B"Op3(3))

is locally free, with fiber H? (O (3)) at [L]. Because of the vanishing of the higher
cohomology of £ on the fiber of a, the higher direct images Ria, (L) are 0 for
i > 0, so the Grothendieck Riemann-Roch theorem becomes a formula for the

Chern character of £ :
Ch(£) = a. (Ch(L‘) ‘Td (fg/c>) .

To evaluate this explicitly requires the following steps:

(a) Describe the Chow ring A(®).
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(b) Describe the direct image map «. : A(®) — A(G).

(c) Calculate the Chern character of £ and the Todd class of the relative tangent
bundle 7 e

(d) Take the direct image of their product, to arrive at Ch(&).
(e) Finally, convert this back into the Chern classes of £.

(a) We notice that ® = IPS is the projectivization of the tautological bundle.
We have

Proposition 6.14 (E & H Proposition 9.10). Let G = G(k, n) be the Grassman-
nian of k-planes in P" and ® < G x IP" the universal k-plane as above, with

m:® — Gandn: P — P" the projection maps. We have then

A@) = A (T = ergF + onal T+ (C) oy, )

where { € Al(®) is the tautological class, or equivalently the pullback via  of the
hyperplane class in IP".

By the above,
A(®) = AG)[)/ (&2~ 1L +o1,1)

where ( is the hyperplane class of IP".
(b) let s denote the total Segre class (the formal power series inverse to the

total Chern class). We have

11
C(S) N 1 —01+01.1

=140+ 0.

@ (1+g+z;2+---> —5(S) =
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In other words,
0.0=1, a(l}) =01, a(®)=0n and a.(C*) =0.

(c) To compute the Chern character of £, we first observe that, since the fiber
of the line bundle Opg(1) at a point (L, p) € ® is the dual of the one-dimensional

vector subspace of C* corresponding to p, we have
¢ =c1(Ops(1)) = prc1 (Ops(1))
In particular, it follows that
c1(L) =3¢

and so

Ch(£) =1+3 + ;gz + %53,

since higher powers of { vanish.

For the Todd class of the relative tangent bundle, if we denote by U the
tautological line bundle on ® = IPS, and by Q the tautological quotient bundle,
we have

From the exact sequence

0—U—>a*S§ — Q—0
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we see that

1(Q)=c1(a*S)—c1(U) = -1+

and hence

a1 (Tye) =1 U ®Q) = L+ e1(Q) = o1 +2¢.

Plugging this into the formula for the Todd class, we have

20— (20-n)? (20-o)*
Td<7;1§/<3>:1+ 2 T 12 70

(d) Taking the product of the above Chern character and Todd class, we have

1 1
Ch(£)Td (”ﬁg/c) — 145 (8f —01) + 75 (94z;2 2200 + a{-)
1
+o (120@3 ~ 390,02 + 30%5)

1

+ s (—266801¢ + 246022 + 807¢ — o
1

+ oo (1980%@3 +24037% — 3a;*g) .

Applying the direct image map found in step (b), we find that by Grothendieck

Riemann-Roch

1
Ch(g) =4+ 601 + (70’2 - 30’1,1) — 30’2,1 + 50'2,2.

(e) Finally, it remains to recover the Chern classes from this Chern character.
We have
c1(€) = Chy (&) = 607
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and ,
c2(€) = 5Chy (€)* — Chy(£)
= 1807 — (702 — 30711)
=110y + 210’1’1.

Similarly,
3(E) = £Chi(€)° ~ Ch (£)Cha(€) + 2Chy €)
= 3607 — 6071 (702 — 301,1) — 6021
= 72091 — 24021 — 6021

= 420'2,1,

and, finally, the payoff!

1 1 1
ca(E) = ﬁc111(5>4 - §Ch1(8)2Ch2(5) + E(:hz(g)2 +2Ch;(£)Chsz(&) — 6Chy(€)
= 540’;L - 180'12 (70’2 - 301,1) + % (70’2 - 30’1’1)2 - 360’10’2/1 - 20’2’2

— (108 =72 +29 — 36 —2)07 5

_27 0y,
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7 Ending Remarks

We have seen in this document 4 ways of computing the number 27 and 1 way of
verifying it. However, this is certainly not the end of the end of the story. One
may ask how this count differs as we take k to be non-algebraically closed, take
the cubic surface S to be singular, etc. An emerging field of research is to enrich

these counting results using A'-homotopy theory. See Brazelton
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