
Intersection Theory Notes 05/31

3264 and All That

‘Michael’ Zeng, Ruofan

May 31, 2024

Contents

1 Steiner’s Conic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Naïve Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Why not 7776? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Solution 1: the Space of Complete Conics . . . . . . . . . . . . . . . . . . 8

2.1 Complete Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Degeneration of Complete Conics . . . . . . . . . . . . . . . . . . . 10

2.3 Solution 1 to the Five Conics Problem . . . . . . . . . . . . . . . . . 11

3 Solution 2: Excess Intersection Formulas . . . . . . . . . . . . . . . . . . 22

3.1 Solution 2 to the Five Conics Problem . . . . . . . . . . . . . . . . . 23

4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Solution 3: Equivariant Cohomology . . . . . . . . . . . . . . . . . . 27

0



4.2 Sottile’s 3264 Real Conics . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Visualizing All 3264 Conics . . . . . . . . . . . . . . . . . . . . . . . 28

1



1 Steiner’s Conic Problem

For this exposition, fix the ground field k “ C. Recall, a plane conic in P2 is cut

out by a degree 2 homogeneous equation

a0X2
` a1Y2

` a2Z2
` a3XY ` a4YZ ` a5ZX “ 0,

where the zero set is invariant under non-zero scalar multiplication, so the param-

eter space for plane conics is P5.

If we fix a conic Ci, then we can describe the locus Zi in P5 of conics tangent

to Ci by the following incidence correspondence:

Φ “ tpC, Pq P P5
ˆ C | C is tangent to Ci at P.u

where the projection onto the two factors are as follows:

Φ

Zi Ci

πZi
πCi

The fiber of the projection πCi corresponds to conics tangent to Ci at P, i.e. the

equation of C restricted to C 1 should vanish at P to at least order 2, which is

a linear condition that cuts dimension by 2. Hence, the fibers of πCi are linear

subspaces of dimension 5 ´ 2 “ 3. On the other hand, the projection πZi is an

isomorphism as always, so Zi is a P3-bundle over Ci. We conclude that Zi is an

irreducible hypersurface in P5. We see that if we intersect 5 of these loci, we

should expect that the dimension is cut down to zero, as long as all intersections

are transverse, and we can then count the number of points in this intersection as
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usual. This motivates the following question:

Problem 1.1. (Steiner’s Conic Problem) How many plane conics are simul-

taneous tangent to 5 general conics in P2?

Figure 1.2: The red conic is simultaneously tangent to all 5 given conics. Illustrated
by B. S. Paul Breiding and Timme 2019

As we will soon see, this seemingly innocent question requires a great deal of

extra work.
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1.1 Naïve Attempt

We remember our solution to circles of Apollonius, which asks how many plane

circles are simultaneous tangent to 3 general circles in P2. In that calculation, we

identified the loci Zi of circles tangent to a given circle Ci, which was a degree 2

hypersurface in P3, the parameter space of plane circles. We then used Bezout’s

theorem and calculated that the number of points in Z1 X Z2 X Z3 was 8 and

verified transversality. The five conics problem is apparently a generalization of

the circles problem, so we may attempt to run the same arguments.

We have seen that the loci Zi of conics tangent to a given plane conic Ci is a

hypersurface in P5, so we only need to figure out its degree. To do this, we may

repeat our application of Hurwitz’s formula.

Theorem 1.3 (Riemann-Hurwitz formula cf. Hartshorne IV.2.4, p301.). Let

f : X Ñ Y be a finite separable morphism of curves. Let n “ deg f and R be the

ramification divisor. Then

2gpXq ´ 2 “ n ¨ p2gpYq ´ 2q ` deg R.

See Eisenbud & Harris §7.7 for a generalization.

To calculate the degree of Zi, we need to intersect it with a transverse line

(pencil) of conics Λ “ tDtu in P5. Say two conics D0, D8 in ΛzZi has equations F

and G. Like before,

#Λ X Zi “ # ramification points of F{G “ deg RpF{Gq

where R stands for the ramification divisor, and F{G is viewed as a rational
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function from Ci – P1 to P1.

Now, F is zero on the 4 intersection points of D0 X Ci, and G is zero 4 times on

D8 X Ci, so F{G is a map of degree 4. Plugging in n “ 4 and gpP1q “ 0 into the

Hurwitz formula, we conclude that

deg Zi “ deg RpF{Gq “ 6.

So if everything works like before, we should expect that

#Z1 X ¨ ¨ ¨ X Z5 “ 65

“ 7776.
In fact, this is the number that Steiner himself in the year 1848 calculated. Unfor-

tunately, this is incorrect!

1.2 Why not 7776?

The failure of the above solution lies in the last step: verifying transversality. The

calculation for 7776 holds up as long as the intersections can be made generically

transverse. This is our first example where this fails!

Problem 1.4. The loci Zi can never be made transverse, because every

degenerate conic of the double line type is automatically tangent to any

given conic.

Indeed, any double line intersects a given conic in P2, and each point of

intersection automatically has multiplicity ě 2. Therefore, each Zi necessarily

contains the singular locus in P5 of double lines, which traces out a Veronese

5



surface, so the intersection Z1 X ¨ ¨ ¨ X Z5 is necessarily infinite!

*** picture

Given this knowledge, it is stupid to ask how many possibly degenerate conics

are tangent to 5 given ones. Instead, we are forced to modify our enumerative

problem to smooth conics:

Problem 1.5. (Steiner’s Conic Problem, modified) How many smooth plane

conics are simultaneous tangent to 5 general conics in P2?

The undesirable locus S of double lines is called the locus of excess intersec-

tions. There are several ways to remove its contribution to our count:

1. Blowing up the excess locus. We may blow up P5 along S and calculate the

intersection rZis
5 in BlSP5. This can be slightly cumbersome as the Chow

ring of a blow up is less computationally accessible. Griffith and J. Harris

1994 §6.1 has an account of this method.

2. Excess intersection formulas. Originally introduced at the greatest general-

ity in W. Fulton 1984 §7, these formulas provide a direct way of calculating

the contribution of each component in the intersection to the number pro-

vided by the naive intersection product. Eisenbud and Harris 2016 carries

out this method in §13.3.5.

3. Compactifying the parameter space. Now that we have limited our attention

to smooth conics, the corresponding subset in P5 is no longer a closed locus.

However , we may elect to modify our parameter space in such a way that

we obtain a closed locus again. The trouble is that there are many ways to

compactify a parameter space. As Eisenbud & Harris put, finding the right
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compactification is closer to an art. In the case of smooth conics, the space of

complete conics and Kontsevich spaces are two of the compactifications that are

worth considering.

In the following sections, we attempt to give an account of the second and

third methods.
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2 Solution 1: the Space of Complete Conics

2.1 Complete Conics

We would like to modify the parameter space in such a way that the smooth locus

stays unchanged, but we have better control over degenerate conics (especially

double lines). One important idea in finding the right parameter space is to

consider dual conics. We recall that the parameter space for lines in P2 is another

P2, and the identification of P2 with its dual pP2q_ sends points to lines and lines

to points.

Figure 2.1: An example of dual curves (Wikipedia)

The dual of a conic is another conic, and the dual of a smooth conic is also

smooth. Furthermore, the double dual of a conic is itself. Therefore, it is reasonable

to consider the following symmetric construction.

Definition 2.2. Let U “
␣

pC, C_q P P5 ˆ P5_ | C a smooth conic in P2 and C_ Ă

P2_ its dual u be the open set of complete conics. Then, we define the variety of

complete conics to be its closure X “ Ū Ă P5 ˆ P5_.
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Since we took the closure, we have necessarily picked up points corresponding

to degenerate conics. With a bit of effort, we can make the following classification

of complete conics:

1. Smooth complete conics. pC, C1q P U; that is, C and C1 are both smooth and

C1 “ C_.

2. A union of lines and a double line. C “ L Y M, and C1 “ 2p_, where

p_ Ă P2_ is the line dual to p “ L X M.

3. A double line and a union of lines. C “ 2L, and C1 “ p_ Y q_ is the union

of the lines in P2_ dual to two points p, q P L.

4. A couple of two double lines. C “ 2L, and C1 “ 2p_ is the double of the

line in P2_ dual to a point p P L.

Figure 2.3: Singular loci in the two parameter spaces.

In the next subsection, we verify this classification using a bit of multilinear

algebra.
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2.2 Degeneration of Complete Conics

Recall that we have the following identifications as long as char k ‰ 2:

• A symmetric linear map φ : V Ñ V_;

• A quadratic form q : V Ñ k;

• An element q 1 P Sym2 V_.

Furthermore, a quadric hypersurface Q is defined as the zero locus of q in PV. In

particular, a plane conic is defined by a quadratic form on V “ C3.

We see that Q is smooth if and only if the linear map φ is an isomorphism.

Q becomes singular whenever φ fails to be an isomorphism, in which case

Sing Q “ Ppker φq. Therefore, it is reasonable to introduce the following notion of

rank for Q:

Definition 2.4. The rank of a quadric hypersurface Q is defined to be rk φ, or

equivalently, dim PV ´ dim Sing Q.

We can explicitly find the equations of X using quadratic forms:

Proposition 2.5. The variety

X Ă P
´

Sym2V_
¯

ˆ P
´

Sym2V
¯

“ P5
ˆ P5_

of complete conics is smooth and irreducible. Thinking of pφ, ψq P P5 ˆ P5_ as

coming from a pair of symmetric matrices φ : V Ñ V_ and ψ : V_ Ñ V, the

scheme X is defined by the ideal I generated by the eight bilinear equations specifying

that the product ψ ˝ φ has its diagonal entries equal to one another (two equations)

and its off-diagonal entries equal to zero (six equations).
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As a consequence, the rank of the quadratic form determines the type of

degeneracy of a complete conic:

Corollary 2.6. If pφ, ψq P X, then one of the following holds:

(a) (Smooth complete conics) If φ is of rank 3 , then ψ must be its inverse.

(b) (union of lines and double line) If φ is of rank 2, then (since X is symmetric)

the products ψ ˝ φ and φ ˝ ψ must both be zero; it follows that ψ is the unique

(up to scalars) symmetric map V_ Ñ V whose kernel is the image of φ and

whose image is the kernel of φ.

(c) (double lines and union of lines) If φ is of rank 1 , ψ may have rank 1 or 2 ;

in the latter case, it may be any symmetric map V_ Ñ V whose kernel is the

image of φ and whose image is the kernel of φ.

(d) (pair of double lines) If φ and ψ both have rank 1 , they simply have to satisfy

the condition that the kernel of ψ contains the image of φ and vice versa.

2.3 Solution 1 to the Five Conics Problem

We have established that the variety X of complete conics is smooth and projective.

To redo the calculation of the five conics problem, we consider the locus ZCi Ď X

of complete conics pC, C_q where C is tangent to a given conic Ci. We let ζ :“ rZCis

denote its class in the Chow ring ApXq. Our argument requires the following

steps:

(a) No more excess intersection. We have to show that the intersection ZC1 X

¨ ¨ ¨ X ZC5 contains only smooth complete conics.
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(b) Transversality. We have to show that the intersection ZC1 X ¨ ¨ ¨ X ZC5 is

transverse.

(c) Intersection product. We need to find a way to evaluate the product ζ5 in

ApXq.

(a) Complete conics tangent to five conics are smooth. We need to check

that the intersection cannot contain each singularity type of complete conics.

For pC, C 1q equals a union of lines and a double line, it suffices to check the

case when C is the union of two lines. This implies the other case by symmetry.

So let pC, C 1q “ pL Y M, 2p_q where p “ L X M. Then, if C is tangent to a given

conic Ci, then either L (or M) is a tangent line to Ci, or Ci contains the double

point p.

Now suppose that the above pC, C 1q lies in the intersection ZC1 X ¨ ¨ ¨ X ZC5 .

Since the conics Ci are general, no three conics should be concurrent, so p can be

contained in up to 2 of the given conics. We study each of the cases.

(i) p lies on none of the given conics. Then, L and M together must be tangent

to all five conics, which means each of the five conics has to contain one

the dual points L_ or M_. However, since C_
i are general, L_ and M_ are

contained in a total of at most 4 conics! Therefore, this case cannot happen.

(ii) p lies on one of the given conics. Say p P C1. Since C1 is general with respect

to C2, C3, C4 and C5, it will not contain any of the finitely many points of

pairwise intersection of lines tangent to two of them. Thus L and M cannot

each be tangent to two of the conics C2, . . . , C5, and once more we see that

pL Y M, 2p_q for at most four of the Ci.
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(iii) p lies on two of the given conics. Say p P C1 X C2. Since C3, C4 and C5 are

general with respect to C1 and C2, none of the finitely many lines tangent

to two of them passes through a point of C1 X C2; thus L and M can each

be tangent to at most one of the conics C3, C4 and C5, and again we see that

pL Y M, 2p_q is contained in at most four of the Ci.

Hence, the intersection ZC1 X ¨ ¨ ¨ X ZC5 cannot contain degenerate complete

conics of type pL X M, 2p_q, and by symmetry, p2L, p_ Y q_q.

Figure 2.7: In each of the three cases, pL X M, 2p_q can be tangent to up to 4 of
the conics.

A similar argument shows that this intersection cannot contain p2L, 2p_q. We

have eliminated excess intersections by constructing the new loci!

(b) Transversality. Since the intersection now only contains smooth complete

conics, we may check transversality only on the open set of smooth complete

conics, which is then isomorphic to the open set of smooth ordinary conics in P5.

So let Z˝
Ci

be the locus of smooth plane conics tangent to the given Ci. Like before,
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we try to identify its tangent space with something else. This time, the projective

tangent space to Z˝
Ci

at a point p can be identified with the hyperplane of conics

passing through p.

Lemma 2.8 (Eisenbud and Harris 2016 Proposition 8.6, Tangent Spaces to a

Discriminant Hypersurface). Let Pd “ PH0 pOP1pdqq be the space of polynomials

of degree d on P1 and D Ă Pd the discriminant hypersurface, that is, the locus of

polynomials with a repeated root. If F P D is a point corresponding to a polynomial

with exactly one double root p and d ´ 2 simple roots, then D is smooth at F with

tangent space the space of polynomials vanishing at p.

Proposition 2.9. Let Ci Ă P2 be a smooth conic curve and Z˝
Ci

as above. Then,

If C P ZCi has a point p of simple tangency with Ci (i.e. multicplicity 2) and is

otherwise transverse, then Z˝
Ci

is smooth at rCs. In this case, the projective tangent

plane TrCsZ˝
Ci

to Z˝
Ci

at rCs is the hyperplane Hp Ă P5 of conics passing through p.

Proof

The inclusion

P1
– Ci Ñ P2

induces a restriction of homogeneous forms

H0
pOP2p2qq Ñ H0 `OCip2q

˘

– H0
pOP1p4qq

which is surjective, with kernel spanned by the equation of Ci. Therefore, if

we projectivize, then we obtain a rational map in the form of the projection

from the point rCis:
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πrCis
: P5

– PH0
pOP2p2qq 99K PH0

pOP1p4qq – P4.

The closure Z˝
Ci

in P5 is thus the cone with vertex rCis over the hypersurface

D Ă P4 of singular divisors in the linear system |OP1p4q|, i.e. a discriminant

hypersurface. If the tangency of C P Z˝
Ci

at p is simple, then the equation of

C|Ci has a double root at p and simple roots elsewhere. By Lemma 2.8, ZCi

is smooth at rCs, and its projective tangent space in P5 is the hyperplane Hp.

■

This identification aligns well with our geometric intuition: a simple tangency

of C with Ci at p is equivalent to an order 2 vanishing condition at p. By taking the

tangent space, we linearize ZCi at rCs and only remember the first order vanishing

condition at p.

Figure 2.10: TrCsZ˝
Ci

is the linearization Hp.

Corollary 2.11. Then intersection ZC1 X ¨ ¨ ¨ X ZC5 in the space of complete conics

is transverse.
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Proof

We first identify ZC1 X ¨ ¨ ¨ X ZC5 Ď X with Z˝
C1

X ¨ ¨ ¨ X Z˝
C5

Ď P5. Then in P5,

the (projective) tangent space at each rCs P Z˝
C1

X ¨ ¨ ¨ X Z˝
C5

is cut out by the

hyperplanes Hp1 , . . . , Hp5 , so it is zero-dimensional. ■

(c) The Chow ring of the space of complete conics. Each ZCi is a hypersurface

in the space of complete conics, so we only need to understand the structure of

A1pXq to determine the class ζ “ rZCis. Since X Ď P5 ˆ P5_ is a smooth projective

subvariety, we may pull back the hyperplane classes from the product of projective

spaces. So let α, β P A1pXq be the pullbacks to X Ă P5 ˆ P5_ of the hyperplane

classes on P5 and P5_. These are respectively represented by the divisors

Ap “ tpC, C_
q | p P Cu

(for any point p P P2 ) and

BL “ tpC, C_
q | L P C_

u

(for any point L P P2_ ).

Also, let γ, φ P A4pXq be the classes of the curves Γ and Φ that are the pullbacks

to X of general lines in P5 and P5_. These are, respectively, the classes of the loci

of complete conics pC, C_q such that C contains four general points in the plane,

and such that C_ contains four points Li P P2_ (that is, C is tangent to four lines

in P2 ). We are now ready to describe the Chow group of divisors on X.
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Proposition 2.12. The group A1pXq of divisor classes on X has rank 2, and is

generated over Q by α and β. The intersection number of these classes with γ and

φ are given by the table

α β

γ 1 2

φ 2 1

Proof

The intersection numbers are calculated by applying Bezout’s theorem. The

more interesting part of the statement lies in the Picard rank of X.

We have already found two independent elements α, β of A1pXq, so the

Picard number of X is at least 2. To bound the Picard number of X, we let U

be the open set of smooth conics and consider the following two inclusions

U ãÑ P5
Ðâ P5

zU

U ãÑ X Ðâ XzU.

(Here, we are identifying U as an open set of both P5 and X). These induce

excision sequences

A1
pP5

zUq Ñ A1
pP5

q Ñ A1
pUq Ñ 0

A1
pXzUq Ñ A1

pXq Ñ A1
pUq Ñ 0.

The closed set P5zU is the locu3s of singular conics, so it is a hypersurface

in P5, say degree d. Then, the first sequence becomes

Z
¨d
ÝÑ Z Ñ A1

pUq Ñ 0
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which implies that the latter is torsion:

A1
pUq – Z{d.

On the other hand, XzU is the locus of singular complete conics, which

has two irreducible components D1 “ tpL Y M, 2p_q | p P P5u and D2 “

tp2L, p_ Y q_q | L_ P P5_u, corresponding to two of the three singularity

types (recall Section 2.1). Each of these loci is isomorphic a discriminant

hypersurface in P5, so they both have Picard number 1. Thus,

rkZMod A1
pXzUq “ 2.

Now, let’s supply a kernel term to the second sequence:

0 0

ker f

A1pXzUq A1pXq

A1pUq – Z{d

0

f
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Since rank is additive, the diagonal short exact sequence implies

rk A1
pXq “ rk ker f ` rk Z{d “ rk ker f .

Since A1pXzUq surjects onto ker f , we have that rk ker f ď 2. Hence,

rk A1
pXq ď 2,

so we must have

rk A1
pXq “ 2.

■

Now, we are ready to calculate the class ζ “ rZCis P ApXq. Since A1pXq b Q –

Q ¨ tα, βu, we may assume that

ζ “ qα ` rβ

for q, r P Q. Recall from our naïve solution that Z˝
Ci

has degree 6 in the set of

smooth conics U, so
deg ζ ¨ γ “ γpqα ` rβq

“ q ` 2r

“ 6.

By symmetry,

2q ` r “ 6,

so

q “ r “ 2,
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and

ζ “ 2α ` 2β P A1
pXq.

Then, our goal is to find the intersection number

deg ζ5
“ 32 degpα ` βq

5.

So we would like to calculate the intersection products α5´iβi, and by symmetry

we only have to do so for i “ 0, 1, 2. Furthermore, since conics passing through 3

general points all have at least rank 2, these intersections will occur only on the

open set U1 where the rank is at least 2, which is isomorphic to the same locus in

P5. Therefore, it suffices to do more Bezout’s theorem exercises in P5.

• i “ 0 : Passing through a point is a linear condition on quadrics. There is

a unique quadric through five general points, and the intersection of five

hyperplanes in P5 has degree 1 , so deg
`

α5˘ “ 1.

• i “ 1 : The quadrics tangent to a given line form a quadric hypersurface

in P5. Since not all conics in the one-dimensional linear space of conics

through four general points will be tangent to a general line, deg
`

α4β
˘

“ 2.

• i “ 2 : Similarly, we see that the conics passing through three given general

points and tangent to a general line form a conic curve in U1 Ă P5. Then,

deg
`

α3β2˘ is the degree of the zero-dimensional intersection of a plane with

two quadrics, that is, 4 .

Finally, we have everything necessary to solve the 5 conics problem.

Theorem 2.13. There are 3264 smooth plane conics tangent to five general plane

conics.
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Proof

deg
´

pα ` βq
5
¯

“

ˆ

5
0

˙

` 2
ˆ

5
1

˙

` 4
ˆ

5
2

˙

` 4
ˆ

5
3

˙

` 2
ˆ

5
4

˙

`

ˆ

5
5

˙

“ 1 ` 10 ` 40 ` 40 ` 10 ` 1

“ 102.

Therefore,
deg ζ5

“ 32 ¨ 105

“ 3264!
■
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3 Solution 2: Excess Intersection Formulas

Modifying naïve parameter spaces is not easy and requires great mathematical in-

sight. Neither is there guarantee that a satisfactory compactification of a parameter

space can always be found. Fortunately, excess intersection formulas as developed

by Fulton and MacPherson provides means to compute the contribution of excess

intersections to our naïve counts via brute force.

Let c, s denote the total Chern and Segre classes. Here is the main theorem:

Theorem 3.1 (Excess intersection formula, Eisenbud and Harris 2016 The-

orem 13.3). If S Ă X is a subvariety of a smooth variety X and T is a locally

complete intersection subvariety of X, then

rSsrTs :“
ÿ

C

pιCq˚pγCq

where:

• The sum is taken over the connected components C of S X T.

• ιC : C Ñ X denotes the inclusion morphism.

• γC “

!

spC, Sqc
´

NT{X
ˇ

ˇ

C

¯)

d
P AdpCq, where d “ dim X ´ codim S ´

codim T is the "expected dimension" of the intersection.

Furthermore, if the subvariety S is locally a complete intersection as well, then we

have a symmetric form

γC “

!

spC, Xqc
´

NS{X
ˇ

ˇ

C

¯

c
´

NT{X
ˇ

ˇ

C

¯)

d
.
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This formula is of crucial importance in the development of intersection theory.

First, it provides a satisfactory generalization of intersection products on singular

varieties. Second, it suffices to define the product on local complete intersections

and use the formula to extend to arbitrary subvarieties. Third, the formula

provides a way to define general pullbacks without assuming smoothness or

the moving lemma. See W. Fulton 1984 §6 for a detailed treatment (the excess

intersection formula is stated in §6.3).

3.1 Solution 2 to the Five Conics Problem

Recall,
5
č

i“1

Zi “ T Y Γ,

where T denotes the excess intersection (supported on the Veronese surface S of

double lines) and Γ the dimension-zero locus corresponding to smooth tangent

conics. By the excess intersection formula applied to P5,

7776 “ rZ1s ¨ ¨ ¨ rZ5s

“ pιSq˚pγSq `
ÿ

pPΓ

pιpq˚pγpq

“ tspT, P5
q
ź

i

cpNZi{P5 |Squ0 ` deg Γ

“ deg

˜

spT, P5
q
ź

i

cpNZi{P5 |Sq

¸

` deg Γ.
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Thus, the answer to the five conics problem will be given by

deg Γ “ 7776 ´ deg

˜

spT, P5
q
ź

i

cpNZi{P5 |Sq

¸

.

To complete this, we need to calculate

(a) cpNZi{P5 |Sq for each i, and

(b) spT, P5q.

(a) Let ζ P A1pSq be the class of a line in S – P2, and let η P A1pP5q be the

hyperplane class of P5. Since S is a quadric surface, we see that

η|S “ 2ζ.

We have seen in our naïve computation that Zi are sextic hypersurfaces, so

NZi{P5 – OZip6q,

which implies that

cpNZi{P5q “ 1 ` 6η|S “ 1 ` 12ζ.

(b) Hiding some details under the rug, we first compute

spS, Xq :“ spNS{P▽q “
1

cpNS{P5q
.

By the normal bundle sequence

0 Ñ TS Ñ TP5 |S Ñ NS{P5 Ñ 0,
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we have

cpNS{P5q “
cpTP▽ |Sq

cpTSq
.

Recall that the total Chern class of TPn is p1 ` rHsqn`1. (This can be deduced by

the Euler sequence). Since S – P2, we have

cpTSq “ p1 ` ζq
3

“ 1 ` 3ζ ` 3ζ2.

Similarly,

cpTP5 |Sq “ p1 ` ηq
6
|S

“ 1 ` 6ηS ` 15η2
S

“ 1 ` 12ζ ` 60ζ2.

Thus,

cpNS{P5q “
1 ` 12ζ ` 60ζ2

1 ` 3ζ ` 3ζ2 “ 1 ` 9ζ ` 30ζ2,

whence

spS, Xq “
1

1 ` 9ζ ` 30ζ2 “ 1 ´ 9ζ ` 51ζ2.

Now, the component of
Ş

Zi supported on S is exactly the scheme T “ V
´

I2
S{P5

¯

defined by the square of the ideal IS{P5 . This implies that the degree-k term in

spT, P5q is exactly 2k`3 times the term in spS, P5q. Hence,

spT, Xq “ 8 ´ 144ζ ` 1632ζ2.

Now, we are ready to calculate the contribution to 7776 by the excess intersection:

deg

˜

spT, P5
q
ź

i

cpNZi{P5 |Sq

¸

“ degp1 ` 12ζq
5
p8 ´ 144ζ ` 1632ζ2

q
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which is the coefficient in front of ζ2, and that is

1632 ´ 144 ¨ 5 ¨ 12 ` 8 ¨ 10 ¨ 122
“ 4512.

Therefore, we see again that

deg Γ “ 7776 ´ 4512

“ 3264!
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4 Miscellaneous

Like 27 lines on a cubic, the literature on 3264 conics is quite extensive. Below are

a few extra sources that might be of interest to the reader.

4.1 Solution 3: Equivariant Cohomology

Anderson and William Fulton 2023 §6 details a computation of degp2α ` 2βq5 as

an equivariant integral. The reader may find the weight diagrams of the torus

action on the space of complete conics quite interesting.

4.2 Sottile’s 3264 Real Conics

Sottile 2008 outlines an argument that all 3264 tangent conics can in fact be real

conics. Here is an example:
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Figure 4.1: Sottile’s 3264 real conics.

4.3 Visualizing All 3264 Conics

S. T. Paul Breiding B. S. 2020 applies techniques in numerical algebraic geometry

to quickly generate all 3264 (real or complex) tangent conics given 5 arbitrarily cho-

sen conics. See https://www.juliahomotopycontinuation.org/examples/3264/.

They provide a do-it-yourself page where the user may randomly choose their

favorite 5 conics, and then the program outputs a demonstration of the 3264

tangent conics in an instant. Sadly, the website does not seem to be working at

the moment.
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