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1 Steiner’s Conic Problem

For this exposition, fix the ground field k = C. Recall, a plane conic in IP? is cut

out by a degree 2 homogeneous equation
aOXZ + 111Y2 + llzZZ +a3XY +a4YZ +a5ZX =0,

where the zero set is invariant under non-zero scalar multiplication, so the param-
eter space for plane conics is IP°.
If we fix a conic C;, then we can describe the locus Z; in IP° of conics tangent

to C; by the following incidence correspondence:

® = {(C,P) € P° x C | C is tangent to C; at P.}

where the projection onto the two factors are as follows:

The fiber of the projection 71c, corresponds to conics tangent to C; at P, i.e. the
equation of C restricted to C’ should vanish at P to at least order 2, which is
a linear condition that cuts dimension by 2. Hence, the fibers of 7ic, are linear
subspaces of dimension 5 — 2 = 3. On the other hand, the projection 777, is an
isomorphism as always, so Z; is a P3-bundle over C;. We conclude that Z; is an
irreducible hypersurface in IP>. We see that if we intersect 5 of these loci, we
should expect that the dimension is cut down to zero, as long as all intersections

are transverse, and we can then count the number of points in this intersection as



usual. This motivates the following question:

Problem 1.1. (Steiner’s Conic Problem) How many plane conics are simul-

taneous tangent to 5 general conics in IP??

Figure 1.2: The red conic is simultaneously tangent to all 5 given conics. Illustrated
by B. S. Paul Breiding and Timme 2019

As we will soon see, this seemingly innocent question requires a great deal of

extra work.



1.1 Naive Attempt

We remember our solution to circles of Apollonius, which asks how many plane
circles are simultaneous tangent to 3 general circles in IP2. In that calculation, we
identified the loci Z; of circles tangent to a given circle C;, which was a degree 2
hypersurface in IP?, the parameter space of plane circles. We then used Bezout’s
theorem and calculated that the number of points in Z; n Z; n Z3 was 8 and
verified transversality. The five conics problem is apparently a generalization of
the circles problem, so we may attempt to run the same arguments.

We have seen that the loci Z; of conics tangent to a given plane conic C; is a
hypersurface in IP°, so we only need to figure out its degree. To do this, we may

repeat our application of Hurwitz's formula.

Theorem 1.3 (Riemann-Hurwitz formula cf. Hartshorne IV.2.4, p301.). Let
f : X — Y be a finite separable morphism of curves. Let n = deg f and R be the

ramification divisor. Then
29(X)—2=mn-(2g(Y) —2) + degR.
See Eisenbud & Harris §7.7 for a generalization.

To calculate the degree of Z;, we need to intersect it with a transverse line
(pencil) of conics A = {D;} in IP°. Say two conics Dy, D, in A\Z; has equations F
and G. Like before,

#A\ N Z; = # ramification points of F/G = deg R(F/G)

where R stands for the ramification divisor, and F/G is viewed as a rational



function from C; ~ P! to P!,
Now, F is zero on the 4 intersection points of Dy n C;, and G is zero 4 times on
Dy n C;, s0 F/G is a map of degree 4. Plugging in n = 4 and g(IP!) = 0 into the

Hurwitz formula, we conclude that
deg Z; = deg R(F/G) = 6.
So if everything works like before, we should expect that

#7100 N 25 =6

_7776.

In fact, this is the number that Steiner himself in the year 1848 calculated. Unfor-

tunately, this is incorrect!

1.2 Why not 7776?

The failure of the above solution lies in the last step: verifying transversality. The
calculation for 7776 holds up as long as the intersections can be made generically

transverse. This is our first example where this fails!

Problem 1.4. The loci Z; can never be made transverse, because every
degenerate conic of the double line type is automatically tangent to any

given conic.

Indeed, any double line intersects a given conic in P2, and each point of
intersection automatically has multiplicity > 2. Therefore, each Z; necessarily

contains the singular locus in P> of double lines, which traces out a Veronese



surface, so the intersection Z; n - - - n Z5 is necessarily infinite!

*** picture

Given this knowledge, it is stupid to ask how many possibly degenerate conics
are tangent to 5 given ones. Instead, we are forced to modify our enumerative

problem to smooth conics:

Problem 1.5. (Steiner’s Conic Problem, modified) How many smooth plane

conics are simultaneous tangent to 5 general conics in P??

The undesirable locus S of double lines is called the locus of excess intersec-

tions. There are several ways to remove its contribution to our count:

1. Blowing up the excess locus. We may blow up IP° along S and calculate the
intersection [Z;]° in BlgIP°. This can be slightly cumbersome as the Chow
ring of a blow up is less computationally accessible. Griffith and ]J. Harris

§6.1 has an account of this method.

2. Excess intersection formulas. Originally introduced at the greatest general-
ity in W. Fulton §7, these formulas provide a direct way of calculating
the contribution of each component in the intersection to the number pro-
vided by the naive intersection product. Eisenbud and Harris carries

out this method in §13.3.5.

3. Compactifying the parameter space. Now that we have limited our attention
to smooth conics, the corresponding subset in IP° is no longer a closed locus.
However , we may elect to modify our parameter space in such a way that
we obtain a closed locus again. The trouble is that there are many ways to

compactify a parameter space. As Eisenbud & Harris put, finding the right



compactification is closer to an art. In the case of smooth conics, the space of
complete conics and Kontsevich spaces are two of the compactifications that are

worth considering.

In the following sections, we attempt to give an account of the second and

third methods.



2 Solution 1: the Space of Complete Conics

2.1 Complete Conics

We would like to modify the parameter space in such a way that the smooth locus
stays unchanged, but we have better control over degenerate conics (especially
double lines). One important idea in finding the right parameter space is to
consider dual conics. We recall that the parameter space for lines in P2 is another
IP?, and the identification of IP? with its dual (IP?)" sends points to lines and lines

to points.

Figure 2.1: An example of dual curves (Wikipedia)

The dual of a conic is another conic, and the dual of a smooth conic is also
smooth. Furthermore, the double dual of a conic is itself. Therefore, it is reasonable

to consider the following symmetric construction.

Definition 2.2. Let U = {(C,C") € P> x P°V | C a smooth conic in P> and C¥ <
P2V its dual } be the open set of complete conics. Then, we define the variety of

complete conics to be its closure X = U < P> x P>V,



Since we took the closure, we have necessarily picked up points corresponding
to degenerate conics. With a bit of effort, we can make the following classification

of complete conics:

1. Smooth complete conics. (C,C’) € U; that is, C and C’ are both smooth and
C'=Cv.

2. A union of lines and a double line. C = L u M, and C' = 2pV, where

pV < P2V is the line dual to p = L n M.

3. A double line and a union of lines. C = 2L, and C’ = p¥ u gV is the union

of the lines in P2 dual to two points p,q € L.

4. A couple of two double lines. C = 2L, and C’' = 2p" is the double of the

line in P2 dual to a point p € L.

surjects

IPSI/

double lines

union of lines

Figure 2.3: Singular loci in the two parameter spaces.

In the next subsection, we verify this classification using a bit of multilinear

algebra.



2.2 Degeneration of Complete Conics

Recall that we have the following identifications as long as chark # 2:
¢ A symmetric linear map ¢ : V — VV;
* A quadratic formg:V — k;
e An element ¢’ € Sym? VV.

Furthermore, a quadric hypersurface Q is defined as the zero locus of g in IPV. In
particular, a plane conic is defined by a quadratic form on V = C>.

We see that Q is smooth if and only if the linear map ¢ is an isomorphism.
Q becomes singular whenever ¢ fails to be an isomorphism, in which case
Sing Q = P(ker ¢). Therefore, it is reasonable to introduce the following notion of

rank for Q:

Definition 2.4. The rank of a quadric hypersurface Q is defined to be rk ¢, or
equivalently, dim PV — dim Sing Q.

We can explicitly find the equations of X using quadratic forms:

Proposition 2.5. The variety
X <P (Sym?V*) x P (Sym?V) = P x P°*

of complete conics is smooth and irreducible. Thinking of (¢,v) € P> x P>V as
coming from a pair of symmetric matrices ¢ : V. — VY and ¢ : V¥ — V, the
scheme X is defined by the ideal I generated by the eight bilinear equations specifying
that the product o ¢ has its diagonal entries equal to one another (two equations)

and its off-diagonal entries equal to zero (six equations).
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As a consequence, the rank of the quadratic form determines the type of

degeneracy of a complete conic:

Corollary 2.6. If (¢, ) € X, then one of the following holds:

(a) (Smooth complete conics) If ¢ is of rank 3 , then  must be its inverse.

(b) (union of lines and double line) If ¢ is of rank 2, then (since X is symmetric)
the products ¢ o ¢ and ¢ o P must both be zero; it follows that 1 is the unique
(up to scalars) symmetric map V¥ — V whose kernel is the image of ¢ and

whose image is the kernel of ¢.

(c) (double lines and union of lines) If ¢ is of rank 1, y may have rank 1 or 2 ;
in the latter case, it may be any symmetric map V' — V whose kernel is the

image of ¢ and whose image is the kernel of ¢.

(d) (pair of double lines) If ¢ and 1 both have rank 1 , they simply have to satisfy

the condition that the kernel of 1 contains the image of ¢ and vice versa.

2.3 Solution 1 to the Five Conics Problem

We have established that the variety X of complete conics is smooth and projective.
To redo the calculation of the five conics problem, we consider the locus Z¢, < X
of complete conics (C,C") where C is tangent to a given conic C;. We let { := [Z¢ |
denote its class in the Chow ring A(X). Our argument requires the following

steps:

(a) No more excess intersection. We have to show that the intersection Z¢, n

-++ N Zc, contains only smooth complete conics.

11



(b) Transversality. We have to show that the intersection Zc, n - - n Zc; is

transverse.

(c) Intersection product. We need to find a way to evaluate the product 7% in

A(X).

(a) Complete conics tangent to five conics are smooth. We need to check
that the intersection cannot contain each singularity type of complete conics.

For (C,C’) equals a union of lines and a double line, it suffices to check the
case when C is the union of two lines. This implies the other case by symmetry.
So let (C,C’) = (Lu M, 2pY) where p = L n M. Then, if C is tangent to a given
conic C;, then either L (or M) is a tangent line to C;, or C; contains the double
point p.

Now suppose that the above (C,C’) lies in the intersection Zc, n - - n Zc,.
Since the conics C; are general, no three conics should be concurrent, so p can be

contained in up to 2 of the given conics. We study each of the cases.

(i) p lies on none of the given conics. Then, L and M together must be tangent
to all five conics, which means each of the five conics has to contain one
the dual points LY or M". However, since C; are general, LY and M" are

contained in a total of at most 4 conics! Therefore, this case cannot happen.

(ii) p lies on one of the given conics. Say p € Cy. Since C; is general with respect
to Cp,C3,Cy4 and Cs, it will not contain any of the finitely many points of
pairwise intersection of lines tangent to two of them. Thus L and M cannot
each be tangent to two of the conics C, ..., Cs, and once more we see that

(Lu M,2pY) for at most four of the C;.

12



(iii) p lies on two of the given conics. Say p € C; n Cy. Since C3,C4 and Cs are
general with respect to C; and C;, none of the finitely many lines tangent
to two of them passes through a point of C; n Cy; thus L and M can each
be tangent to at most one of the conics C3, C4 and Cs, and again we see that

(Lu M,2pY) is contained in at most four of the C;.

Hence, the intersection Z¢, n -+ N Z¢, cannot contain degenerate complete

conics of type (L n M,2pY), and by symmetry, (2L, p¥ v g").

Figure 2.7: In each of the three cases, (L n M, 2p") can be tangent to up to 4 of
the conics.

A similar argument shows that this intersection cannot contain (2L,2p"). We

have eliminated excess intersections by constructing the new loci!

(b) Transversality. Since the intersection now only contains smooth complete
conics, we may check transversality only on the open set of smooth complete
conics, which is then isomorphic to the open set of smooth ordinary conics in IP°.

So let Z¢. be the locus of smooth plane conics tangent to the given C;. Like before,

13



we try to identify its tangent space with something else. This time, the projective
tangent space to Z¢ at a point p can be identified with the hyperplane of conics

passing through p.

Lemma 2.8 (Eisenbud and Harris Proposition 8.6, Tangent Spaces to a
Discriminant Hypersurface). Let P? = PH? (Op1(d)) be the space of polynomials
of degree d on P! and D < P? the discriminant hypersurface, that is, the locus of
polynomials with a repeated root. If F € D is a point corresponding to a polynomial
with exactly one double root p and d — 2 simple roots, then D is smooth at F with

tangent space the space of polynomials vanishing at p.

Proposition 2.9. Let C; = IP? be a smooth conic curve and Z¢. as above. Then,
If C € Zc, has a point p of simple tangency with C; (i.e. multicplicity 2) and is
otherwise transverse, then Z¢. is smooth at [C]. In this case, the projective tangent

plane Tc|Z¢. to Z¢. at [C] is the hyperplane Hp < IP° of conics passing through p.

Proof

The inclusion

P! ~ C; — P?

induces a restriction of homogeneous forms
H® (Op2(2)) — H® (O, (2)) = H® (Op1(4))

which is surjective, with kernel spanned by the equation of C;. Therefore, if

we projectivize, then we obtain a rational map in the form of the projection

from the point [C;]:

14



e : P° = PH (Op2(2)) --» PH? (Op1 (4)) = P

The closure Z¢. in IP° is thus the cone with vertex [C;] over the hypersurface
D < P* of singular divisors in the linear system |Op:1(4)], i.e. a discriminant
hypersurface. If the tangency of C € Z¢. at p is simple, then the equation of
C|c, has a double root at p and simple roots elsewhere. By Lemma 2.8, Z,
is smooth at [C], and its projective tangent space in IP° is the hyperplane Hy.

This identification aligns well with our geometric intuition: a simple tangency
of C with C; at p is equivalent to an order 2 vanishing condition at p. By taking the

tangent space, we linearize Zc, at [C] and only remember the first order vanishing

condition at p.

]135

Figure 2.10: Tc)Z¢, is the linearization H).

Corollary 2.11. Then intersection Zc, N --- N Zc, in the space of complete conics

1s transverse.

15



Proof
We first identify Zc, n--- 0 Zc; © X with Z2 n--- 0 Zg, = IP°. Then in IP?,
the (projective) tangent space at each [C] € Zz -+ n Z¢, is cut out by the

hyperplanes Hy,, ..., Hp, so it is zero-dimensional. [

(c) The Chow ring of the space of complete conics. Each Z¢, is a hypersurface
in the space of complete conics, so we only need to understand the structure of
Al(X) to determine the class { = [Z¢,]. Since X < IP°> x P°V is a smooth projective
subvariety, we may pull back the hyperplane classes from the product of projective
spaces. So let a, € A1(X) be the pullbacks to X < P> x IP°V of the hyperplane

classes on IP° and IP°V. These are respectively represented by the divisors
Ap ={(C,CY) | peC}

(for any point p € P? ) and
Bp ={(C,C")|LeC”}

(for any point L € P2V ).

Also, let v, € A*(X) be the classes of the curves I' and @ that are the pullbacks
to X of general lines in P? and P°V. These are, respectively, the classes of the loci
of complete conics (C,C") such that C contains four general points in the plane,
and such that CV contains four points L; € P2V (that is, C is tangent to four lines

in IP? ). We are now ready to describe the Chow group of divisors on X.

16



Proposition 2.12. The group Al(X) of divisor classes on X has rank 2, and is

generated over Q by w and B. The intersection number of these classes with vy and

@ are given by the table
« p
v 1 2
p 21
Proof

The intersection numbers are calculated by applying Bezout’s theorem. The
more interesting part of the statement lies in the Picard rank of X.

We have already found two independent elements &, 8 of A!(X), so the
Picard number of X is at least 2. To bound the Picard number of X, we let U

be the open set of smooth conics and consider the following two inclusions

U—P° —P\U
U— X < X\U.

(Here, we are identifying U as an open set of both P> and X). These induce

excision sequences

ALP\U) - AY(P°) - AY(U) -0
AYxX\U) - AY(X) - AYU) — 0.

The closed set IP>\U is the locu3s of singular conics, so it is a hypersurface

in P>, say degree d. Then, the first sequence becomes
z%7 - A U) -0

17




which implies that the latter is torsion:
AYU) = z/d.

On the other hand, X\U is the locus of singular complete conics, which
has two irreducible components D; = {(L u M,2p") | p € P’} and D, =
{(2L,p¥ uqY) | LY € P>V}, corresponding to two of the three singularity
types (recall Section 2.1). Each of these loci is isomorphic a discriminant

hypersurface in IP°, so they both have Picard number 1. Thus,
rkzmoa A" (X\U) = 2.

Now, let’s supply a kernel term to the second sequence:

ker f

S~
e

0
/
\
» AN(X

AN(X\U)

18




Since rank is additive, the diagonal short exact sequence implies
rk AY(X) = rkker f + rk Z/d = rk ker f.
Since A!(X\U) surjects onto ker f, we have that rk ker f < 2. Hence,
rk AY(X) <2,

so we must have

rk AY(X) = 2.

Now, we are ready to calculate the class { = [Z¢,] € A(X). Since AL(X) ®Q =

Q- {«, B}, we may assume that

(=qa+71p

for 4,7 € Q. Recall from our naive solution that Z: has degree 6 in the set of

smooth conics U, so
degl-v = v(qa +7p)

=q+2r
= 6.
By symmetry,
2q+r =26,
SO
g=r=2,



and

7 =2u+2Be AY(X).

Then, our goal is to find the intersection number
deg ¢° = 32deg(a + B)°.

So we would like to calculate the intersection products a®~f, and by symmetry
we only have to do so for i = 0,1,2. Furthermore, since conics passing through 3
general points all have at least rank 2, these intersections will occur only on the
open set U; where the rank is at least 2, which is isomorphic to the same locus in

IP°. Therefore, it suffices to do more Bezout’s theorem exercises in IP°.

* i = 0 : Passing through a point is a linear condition on quadrics. There is
a unique quadric through five general points, and the intersection of five

hyperplanes in P° has degree 1, so deg (a°) = 1.

* i = 1: The quadrics tangent to a given line form a quadric hypersurface
in IP°. Since not all conics in the one-dimensional linear space of conics

through four general points will be tangent to a general line, deg (a*g) = 2.

* i = 2: Similarly, we see that the conics passing through three given general
points and tangent to a general line form a conic curve in U; < IP>. Then,
deg (a®p?) is the degree of the zero-dimensional intersection of a plane with

two quadrics, that is, 4 .

Finally, we have everything necessary to solve the 5 conics problem.

Theorem 2.13. There are 3264 smooth plane conics tangent to five general plane

conics.
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Proof

deg ((rx+,3)5) - (g) +ZG) +4(i) +4<§) +2<Z) + (g)
—1+10+40 +40+ 10 +1

= 102.

Therefore,
deg¢® = 32-105

-3264!
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3 Solution 2: Excess Intersection Formulas

Modifying naive parameter spaces is not easy and requires great mathematical in-
sight. Neither is there guarantee that a satisfactory compactification of a parameter
space can always be found. Fortunately, excess intersection formulas as developed
by Fulton and MacPherson provides means to compute the contribution of excess
intersections to our naive counts via brute force.

Let ¢, s denote the total Chern and Segre classes. Here is the main theorem:

Theorem 3.1 (Excess intersection formula, Eisenbud and Harris The-
orem 13.3). If S — X is a subvariety of a smooth variety X and T is a locally

complete intersection subvariety of X, then

where:
® The sum is taken over the connected components C of S N T.

* ic: C — X denotes the inclusion morphism.

°* v = {S(C,S)C <NT/X’C) }d e Ay(C), where d = dim X — codim S —

codim T is the "expected dimension” of the intersection.

Furthermore, if the subvariety S is locally a complete intersection as well, then we

have a symmetric form

7e = {s(6,X0e (Nyyxle) e (Nrixle) §,,-

22



This formula is of crucial importance in the development of intersection theory.
First, it provides a satisfactory generalization of intersection products on singular
varieties. Second, it suffices to define the product on local complete intersections
and use the formula to extend to arbitrary subvarieties. Third, the formula
provides a way to define general pullbacks without assuming smoothness or
the moving lemma. See W. Fulton §6 for a detailed treatment (the excess

intersection formula is stated in §6.3).

3.1 Solution 2 to the Five Conics Problem

Recall,
5
(zi=TorT,
i=1
where T denotes the excess intersection (supported on the Veronese surface S of

double lines) and I" the dimension-zero locus corresponding to smooth tangent

conics. By the excess intersection formula applied to IP°,

7776 = [Z1] - - [Zs]
= (15)x(7s) + D (tp)s(7p)

pel’
— {s(T,P?) ]_[ ¢(Nz psls)}o + degT

= deg (S(T, IP°) HC(N’ZI./]PS‘S)> + degT.

23



Thus, the answer to the five conics problem will be given by

degT' = 7776 — deg (s(T, P°) l_[c(NZi/]Ps|5)) )

To complete this, we need to calculate
(@) c(Nz,pss) for each i, and
(b) s(T,IP°).

(a) Let { € AL(S) be the class of a line in S = IP?, and let 7 € A'(IP°) be the

hyperplane class of IP°. Since S is a quadric surface, we see that
nls = 2.
We have seen in our naive computation that Z; are sextic hypersurfaces, so
NZ,-/]P5 = Ozi(6),

which implies that
C(Nzi/][)s) =1+ 677|S =1+ 12@

(b) Hiding some details under the rug, we first compute

(S, X) 1= s(Ng o) = c(N;S/PS)

By the normal bundle sequence
0 —Ts — Tpsls —’NS/]P5 -0,

24



we have

W) = 2]

Recall that the total Chern class of Tpx is (1 + [H])"*!. (This can be deduced by

the Euler sequence). Since S =~ P2, we have

o(Ts) = (1+0)° =1+37+3>

Similarly,
c(Tpsls) = (1+1)°s

=1+ 615 + 1542

— 1+ 127 + 602>
Thus,

(N ps) = - 1*:;2 i 2252 — 1497 +3022,
whence
(S, X) = w =1-97+51Z°

Now, the component of (1) Z; supported on S is exactly the scheme T = V (Ig /]P5>
defined by the square of the ideal Zg ps. This implies that the degree-k term in

s(T,P%) is exactly 2¥3 times the term in s(S,1P%). Hence,
s(T,X) = 8 — 1447 + 16327>.
Now, we are ready to calculate the contribution to 7776 by the excess intersection:

deg (s(T, P[] c(/\fziﬂpsys)> — deg(1 + 127)°(8 — 1447 + 16327?)

25



which is the coefficient in front of Z?, and that is
1632 —144-5-12+8-10-12% = 4512.

Therefore, we see again that

degT = 7776 — 4512

-3264!
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4 Miscellaneous

Like 27 lines on a cubic, the literature on 3264 conics is quite extensive. Below are

a few extra sources that might be of interest to the reader.

4.1 Solution 3: Equivariant Cohomology

Anderson and William Fulton §6 details a computation of deg(2x + 2p)° as
an equivariant integral. The reader may find the weight diagrams of the torus

action on the space of complete conics quite interesting.

4.2 Sottile’s 3264 Real Conics

Sottile outlines an argument that all 3264 tangent conics can in fact be real

conics. Here is an example:

27



Figure 4.1: Sottile’s 3264 real conics.

4.3 Visualizing All 3264 Conics

S. T. Paul Breiding B. S. applies techniques in numerical algebraic geometry
to quickly generate all 3264 (real or complex) tangent conics given 5 arbitrarily cho-
sen conics. See https://www.juliahomotopycontinuation.org/examples/3264/.
They provide a do-it-yourself page where the user may randomly choose their
favorite 5 conics, and then the program outputs a demonstration of the 3264
tangent conics in an instant. Sadly, the website does not seem to be working at

the moment.
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https://www.juliahomotopycontinuation.org/examples/3264/
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