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28.1 Composition Algebras

Recall that a quadratic form on a k-vector space V is a map n : V → k such that
n(av) = a2n(v) for a ∈ k and v ∈ V , and such that

n(x, y) = n(x+ y)− n(x)− n(y)

is bilinear. Such a form is called nondegenerate if its associated bilinear form is.

28.1.1 Definition. A composition algebra is a not necessarily associative algebra C
with a non-degenerate quadratic form n, called its norm, which admits composition.
That is, such that

n(xy) = n(x)n(y)

for all x, y ∈ C.

It is easy to check that n(1) = 1, and so we can define for any composition algebra
C its associated trace

tC(x) = n(x, 1) = n(x+ 1)− n(x)− 1.

Given such a trace, there is a natural involution

x 7→ x = n(x, 1)− x

such that x+ x = tC(x) and xx = n(x) (see Schafer for the details).

Over C there is a particularly simple classification of such algebras:

28.1.2 Theorem (Hurwitz). Up to isomorphism there are only four composition
algebras over C, of dimensions 1, 2, 4, 8 respectively. They are

1. C with norm n(x) = x2

2. C× C with norm n((a, b)) = ab

3. M2(C) with norm given by the determinant

4. The split Cayley algebra Cs(C).

In dimensions 1, 4, 8 these are simple, but the dimension 2 algebra is only semi-
simple. The split Cayley algebra is perhaps best thought of as the algebra M2(C)×
M2(C) with product given by

(A,B)(C,D) = (AC +DB,BC +DA).

where the involution is defined by[
a b
c d

]
=

[
d −b
−c a

]
.
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28.1.3 Remark. The construction of the split Cayley algebra in this way is via
the Cayley-Dickson construction. It turns out that all composition algebras can be
created through this process.

For future reference we will work out the trace zero elements of each composition
algebra. In dimension 1 this is the trivial subspace. In dimension 2, the trace is
given by

tC(a, b) = a+ b

so the trace zero elements are C(1,−1).

In dimension 4, the trace is given by

tC

([
a b
c d

])
=

[
a b
c d

]
+

[
d −b
−c a

]
= (a+ d)I,

so the trace zero elements are just the trace zero matrices. This space has dimension
3.

In dimension 8, the trace is given by

tC(A,B) = (A,B) + (A,B) = (A,B) + (A,−B) = (A+A, 0)

so the trace zero elements are those pairs with a trace zero matrix as the first
component. This space has dimension 7.

The last thing we will need are the derivations of these composition algebras. In
particular, we are concerned with the inner derivations, which are the derivations D
which lie in the Lie algebra generated by the right and left multiplication operators
under the commutator bracket:

Lx(y) = xy, Rx(y) = yx.

It turns out that composition algebras are a part of a larger collection of algebras
called alternative algebras, which are algebras which satisfy the identity

x(xy) = (xx)y.

A rather tedious calculation shows that the inner derivations for any such algebra
are of the form

Lx −Rx +Dy,z

where
Dy,z = L[y,z] −R[y,z] + 3[Ly, Rz].

To make this more comprensible, observe that

Dy,z(a) = [[y, z], a] + 3(y, a, z)

where (y, a, z) = y(az)− (ya)z is the associator.

In dimension 1, 2 are composition algebras are commutative, so Lx−Ry will act as
zero. The dimension 4 algebra is associative, so the associative [Ly, Rz] will always
vanish in Dy,z. Since the dimension 4 algebra is also simple, it follows that every
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element can be expressed as a commutator, so Lx −Rx = Dy,z for some y, z. We
surmise then that all inner derivations for composition algebras of dimension 1, 2, 4
over C are of the form Dy,z. It turns out this result extends to dimension 8 as well,
but the proof is not so simple.

28.1.4 Remark. It turns out that over C, all derivations of composition algebras
are inner derivations, so this restriction turns out to be no restriction at all.

28.2 Jordan Algebras

28.2.1 Definition. A Jordan algebra J is a nonassociative algebra such that for
all x, y ∈ J we have

• xy = yx (i.e. the algebra is commutative)

• (xy)(xx) = x(y(xx)) (the Jordan identity)

28.2.2 Remark. These axioms imply that xn is well-defined: no matter how you
parenthesize the product of n xs, you get the same product. They also imply that
xm(xny) = xn(xmy). These properties were the original motivation for defining
Jordan algebras.

28.3 Example. Let A be any associative algebra. Define the Jordan product

x ◦ y =
xy + yx

2
.

Then A with the Jordan product is no longer associative, but it is a Jordan algebra.

28.4 Example. Let Hn(A) be the set of n× n Hermitian matrices over A. This
set is not closed under matrix multiplication, but we have (for x, y ∈ Hn(A)

(x ◦ y)∗ =
1

2
((xy)∗ + (yx)∗) =

1

2
(y∗x∗ + x∗y∗) = x ◦ y

so Hn(A) is closed under the Jordan product. Thus Hn(A) is a Jordan Algebra:
one that we’ll need soon for the Tits construction!

We shall restrict our attention to unital Jordan algebras J , with a “normalized trace”
tJ : J → C. This is a C-linear map such that tJ (1) = 1 and tJ ((xy)z) = tJ (x(yz))
for all x, y, z ∈ J .

28.5 Example. In the case of J = Hn(A), we have a normalized trace tJ = 1
n Tr.

We shall define J0 to be the set {x ∈ J : tJ(x) = 0}. Note that for any x ∈ J , we
have x− tJ(x) ∈ J0. Thus we have a decomposition J = C1⊕ J0.

Let x ⋆ y = xy − tJ(xy)1, the part of xy in J0. This defines a commutative
multiplication on J0, which shall be used in the Tits construction.

Finally, let dx,y : J → J be the function dx,y(z) = x(yz)− y(xz). This is the inner
derivation of J determined by x, y. Our sources claim that the Jordan algebra
axioms implies that this is a derivation (satisfying the Leibniz rule), but we could
not reproduce that calculation.

We have d1,x(z) = x(z) − (xz) = 0, so d1,x = 0 for all x ∈ J . Thus we have the
space of inner derivations given by
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inderJ = {dx,y : x, y ∈ J0}.

Thus we have all the pieces of the Tits construction.

28.3 Tits Construction and the Freudenthal Magic Square

Throughout, let F be an algebraically closed field of characteristic not 3. It is a fact
that there are exactly 4 non-isomorphic finite-dimensional normed algebras over F,
one each in dimensions 1, 2, 4, and 8. As a vector space, each of these algebras
is a direct sum of two copies of the previous. The reason this “doubling” process
stops at dimension 8 is because the construction requires the previous algebra to
be associative. However, the 8 dimensional normed algebra always ceases to be
associative, instead being alternative, a weaker notion.

The discovery of the Tits construction and the Tits-Freudenthal magic square
thereupon corroborates the folklore assertion that all exceptional Lie algebras owe
their existence to the Cayley octonions (over F, the unique normed algebra of
dimension 8).

Cartan (Élie, the father) first discovered that G2 arises from the automorphisms of
O.

28.3.1 Theorem. [Cartan 1914]

AutO ∼= G2, derO ∼= g2.

Next, recall that n × n Hermitian matrices over a composition algebra has the
structure of a Jordan algebra. In particular, take n = 3. The Jordan algebra H3(C)
is sometimes referred to as the Freudenthal algebra, the automorphisms of which
gives rise to F4.

28.3.2 Theorem. [Chevalley-Schafer 1950]

Aut(H3(O)) ∼= F4, der(H3(O)) ∼= f4.

Tits in 1962 discovered a construction which takes in a pair of composition algebras,
or more generally, a composition algebra and a Jordan algebra, and results in a
Lie algebra:
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Let C be a composition algebra with tC its trace, D its associated derivation
(Da,b(c) = [[a, b], c] + 3(a, c, b)). Let J be a Jordan algebra with tJ its normalized
trace, ∗ the product on J0, and d its associated derivation (dx,y(z) = x(yz)−y(xz)).
The Tits construction on C and J has the underlying vector space

T (C, J) := inder C ⊕ (C0 ⊗ J0)⊕ inderJ.

It admits the structure of a Lie algebra in the following way:

• inder C and inder J are Lie subalgebras.

• [inder C, inder J ] = 0.

Let a, b denote elements of C0, and x, y elements of J0. Let D and d denote
elements of inder C and inder J , resp. Then,

• [D, a⊗ x] = D(a)⊗ x. [d, a⊗ x] = a⊗ d(x).

• [a⊗ x, b⊗ y] = tJ(xy)da,b + [a, b]⊗ (x ∗ y) + 2tC(ab)dx,y.

One should check that this endows T (C, J) with the structure of a Lie algebra.

Take C1 to be the composition algebra of dimensions 1,2,4, or 8 over F. Take J
to be H3 over the four composition algebras. The Tits construction outputs the
Freudenthal Magic Square of Lie algebras:

1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ×A2 A5 E6

4 C3 A5 D6 E7

8 F4 E6 E7 E8

Table 1: The Freudenthal Magic Square

One immediately notices the symmetry of this table across the main diagonal. This
fact in addition to the appearance of many of the exceptional algebras is what
earned this table the word “magic” in its name.

One can further extend this table by letting J be one of the smaller dimensional
Jordan algebras over F:

F F× F× F 1 2 4 8

1 0 0 A1 A2 C3 F4

2 0 U A2 A2 ×A2 A5 E6

4 A1 A1 ×A1 ×A1 C3 A5 D6 E7

8 G2 D4 F4 E6 E7 E8

Table 2: The extended Freudenthal Magic Square
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All exceptional types, including G2, appear in the extended table. However,
the table fails to be symmetric. In fact, one may further extend the table to a
magic triangle, so that it is again symmetric —- cf. [Deligne & Gross 2002] and
[Cvitanović 2007]. The appearance of D4 in the extended table, in addition to its
3-fold symmetry, is the reason why some consider it as one of the exceptionals.

More symmetries appear in Freudenthal’s magic square. The first row can be
obtained from the second row from a Z/2-diagram folding:

A1 A2 C3 F4

A2 A2 ×A2 A5 E6

The first column in the extended table can be similarly obtained from the second
column by a Z/3-folding.

A1 A1 ×A1 ×A1

G2 D4

Vinberg in 1966 discovered a different construction using triality algebras, for which
the diagonal symmetry of the 4× 4 magic square is obvious. For a normed algebra
A, the triality group of A is

Tri(A) : {(U1, U2, U3) ∈ SO3(A) | U1(xy) = U2(x)U3(y)}.

Tri(A) is an algebraic group, and we may take its associated Lie algebra tri(A).
For a pair of composition algebras A and B, let Ai and Bi denote different but
isomorphic copies of A, resp. B. Vinberg’s construction goes as follows:

g(A,B) := triA⊗ triB ⊕ A1 ⊗B1 ⊕ A2 ⊗B2 ⊕ A3 ⊗B3.

The Lie algebra structure is given as follows:

• triA× triB is a Lie subalgebra.

• Let ai ∈ Ai and bi ∈ Bi. Set [a1 ⊗ b1, a2 ⊗ b2] = a1a2 ⊗ b1b2, viewed as an
element of A3 ⊗B3.

Vinberg’s construction is obviously symmetric in A and B.

What are these triality algebras? We have 0,F×F, sl2× sl2× sl2, so8 corresponding
to the normed algebras of dimensions 1, 2, 4, and 8. The name triality comes from
the 3-fold symmetry of the D4 diagram.

Some amazing projective geometry arises from the Freudenthal magic square, cf.
[Landsberg & Manivel 2001].

https://www.sciencedirect.com/science/article/pii/S1631073X02025906
https://link.springer.com/chapter/10.1007/978-3-540-30308-4_3
https://www.sciencedirect.com/science/article/pii/S0021869300986976
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28.4 Construction of Exceptional Algebras

A few final remarks on the exceptional Lie algebras over C that arise in this way
from the Tits construction. Throughout, let J = H3(Cs(C)).

Looking in the first row of the magic square, we first see that in the case where
C = C, we see that C0 = 0 and inder(C) = 0. Then, f4 = inder(J). A theorem
of Chevalley and Schafer (Theorem 28.3.2) shows that f4 is simple and that the
complex dimension of f4, dimC f4 = 52. An account of this argument can be
found in [Schafer 1966] as Theorem 4.9. Roughly, Schafer argues for a certain
decomposition of f4 as a 28-dimensional part with three 8-dimensional parts, for a
total dimension of 52, and shows that this algebra is simple. In this way one can
conclude that the inner derivations of H3(Cs(C)) in fact span all derivations of
H3(Cs(C)), since this is a subalgebra of f4 and f4 is simple.

Next, in the case where C = C× C, C0 = C(1,−1) ∼= C and inder(C) = 0 since C
is still commutative and associative. Then, we see that e6 = C⊗C J

0 ⊕ inder(J) =
J0 ⊕ inder(J). Note that dimC J = 27 since we can have any element of Cs(C)
in the upper-triangular off-diagonal entries, but we must have an element of C
in the three diagonal entries, for a total complex dimension of 3 · 8 + 3 · 1 = 27.
Then, dimC J

0 = 26, so dimC e6 = 26 + 52 = 78. An argument for showing that e6
constructed in this way is simple is given in [Schafer 1966] as Theorem 4.12. Note
that e6 is not the only 78-dimensional simple complex Lie algebra, as Lie algebras
of type B6 and C6 are also 78-dimensional. To show that this Lie algebra is not
isomorphic to either of these two, note that e6 constructed in this way acts on J
irreducibly, so e6 has an irreducible 27-dimensional complex representation. One
can verify (with highest weight theory) that neither B6 nor C6 admit an irreducible
representation of this dimension, so e6 is not isomorphic to either of these other
Lie algebras.

In the third row of our square where C = M2(C), C0 = sl2(C), and inder(C) =
{ ad[a,b] : a, b ∈M2(C) }. One can check that inder(C) ∼= sl2(C) – as a good heuris-
tic, note that for any two matrices a, b ∈ M2(C), [a, b] ∈ sl2(C). Then, one can
note that our e7 ∼= sl2(C) ⊕ sl2(C) ⊗ J0 ⊕ inder(J), which can be rewritten at
sl2(C)⊗ (C⊕J0)⊕ inder(J) ∼= sl2(C)⊗J ⊕ inder(J) (as vector spaces – the bracket
structure from the Tits construction may not be preserved by this rearrangement).
Here, dimC e7 = 3 · 27 + 52 = 81 + 52 = 133. As a remark, the third row of the
magic square is related to the Kantor-Koecher-Tits construction of Lie algebras
from a Jordan algebra, from which e7 can also be obtained from the Jordan algebra
H3(Cs(C)).

Finally, in the bottom-right corner, we can analyze the largest case of our construc-
tion when C = Cs(C). Here, we realize e8 = inder(Cs(C))⊕Cs(C)0⊗J0⊕ inder(J).
Recall that by Theorem 28.3.1, inder(C) = g2, and from the construction of g2 as
presented in Section 27, we know dimC g2 = 14. Recall that the trace zero elements
of Cs(C) have dimension 7, so we can compute dimC e8 = 14 + 7 · 26 + 52 = 248.

This analysis gives us the dimensions of the five complex exceptional Lie algebras
as 14, 52, 78, 133, and 248, corresponding to g2, f4, e6, e7, e8, respectively. Their
Weyl groups are also correspondingly large (f4’s is the smallest with 1152 elements)
and relate to other geometries from which these Lie algebras arise.

https://math.mit.edu/~hrm/palestine/schafer-nonassociative-algebras.pdf
https://math.mit.edu/~hrm/palestine/schafer-nonassociative-algebras.pdf

	Presentation 5 (December 6, 2024): Tits construction, Freudenthal Magic Square, and Exceptional Lie Algebras  Scribes: Zach, Zawad, Michael, Bryan
	Composition Algebras
	Jordan Algebras
	Tits Construction and the Freudenthal Magic Square
	Construction of Exceptional Algebras


