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Introduction

The main result of this work is the following theorem: There is only one non-
regular two-dimensional analytic local ring which is factorial. This factorial local ring
is the local ring of the singular point in the quotient space formed by the action of the
binary icosahedral group on the komplex plane. Following KLEIN, this local ring is
C{x, y, z}/

(
x2 + y3 + z5). That this local ring is factorial was shown by MUMFORD

in his work about the topology of normal singularities of algebraic surfaces. I will
also use this result from the work of MUMFORD, in order to show the uniqueness
of this factorial ring in §3. Moreover for that, I will need the results of ARTIN about
rational singularities, which will be referred to in §1.

The importance of rational singularities in this context arises from the fact that
they are precisely the two-dimensional normal singularities with a near-factorial local
ring. There are a number of recent investigations about near-factorial and factorial
local rings – for near-factorial local rings, e.g. the works of KOESTNER and STORCH
[20, 29], for factorial local rings a few works of SAMUEL, e.g. [24], and SCHEJA [25,26].
There already, one also finds special cases of the theorem about the uniqueness of the
icosahedral singularity.

The icosahedral singularity belongs to a special class of singularities, namely the
singularities of quotient spaces which arise from the action of a proper discontinuous
group on a two-dimensional complex manifold. In §2, I have completely classified
these singularities under application of the results of HIRZEBRUCH, MUMFORD, and
PRILL. The classification is only an étude, according to the general results of PRILL
about quotients of complex spaces [22]. Nevertheless is it, apart from its importance
for the proof of the main theorem, also interesting for a few reasons:

• Firstly, it represents a systematic summary of the results of numerous investiga-
tions by GODEAUX on quotient singularities.

• Secondly, the connection between the analytic structure of these singularities
and their many-times investigated topological structure is clarified.

• Thirdly, it results immediately from the classification that the singularities of
quotient spaces from 2-dimensonal complex manifolds are rigid.

1



I have already derived one special case of this result, the rigidity of rational double
points, from a theorem of KIRBY in [4], and TJURINA has recently proven the rigidity
of certain other rational singularities with the methods of GRAUERT and HIRONAKA.

I thank MICHAEL ARTIN and DAVID MUMFORD sincerely for these discussions,
out of which this work materializes.

§1. Rationale Singularities

1.1 This section is a compilation of some of Artin’s results on rational singularities
(cf. [1, 2]). Let (X, x) be a 2-dimensional normal singularity, i.e. let (X, x) be the germ
of a 2-dimensional reduced complex space and the local ring OX,x at the point x is
normal. (The terminology used in what follows regarding the germ (X, x) is hopefully
understandable without further explanations and can be made precise by necessity;
cf. also [13]).

Definition. (X, x) is a rational singularity, if for a resolution f : X′ → X the first direct
image R1 f∗OX′ of the structure sheaf OX′ of X′ vanishes at x.

One obtains a criterion for the rationality of (X, x) as follows. Let f : X′ → X be a
resolution of the singularity. Let the curves C1, . . . , Ck be the irreducible components
of f−1(x). A cycle Z = r1C1 + · · · +rkCk is called positive, if not all ri vanish and
ri ≧ 0 for i = 1, . . . , k. The set of those positive cycles Z partially ordered by this
definition, whose intersection numbers Z · Ci ≦ 0 for i = 1, . . . , k, contains a minimal
element Z0.

Definition. Z0 is called the fundamental cycle of the resolution f of the singularity
(X, x).

The virtual class p(Z) for a cycle Z is defined as usual through the following
formula, in which K is the canonical divisor of X′,

p(Z) =
1
2
(Z · Z + K · Z) + 1.

Now let f be an arbitrary fixed resolution of (X, x) and Z0 the fundamental cycle.
Then, it holds ([2] Prop. 1, Theorem 3, Corollary 6) that:

Theorem 1.1 (Artin). The following statements are equivalent:

i) (X, x) is rational.

ii) p(Z) ≦ 0 for each positive cycle Z.

iii) p (Z0) = 0 for the fundamental cycle Z0.
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Theorem 1.2 (Artin). Let (X, x) be a rational singularity, OX,x its local ring, and m
its maximal ideal. Then, the following holds for the multiplicity e (OX,x) and the embedding
dimension ebdim (OX,x) = dimOX,x/mm/m2, resp.

e (OX,x) = −Z0 · Z0

ebdim (OX,x) = −Z0 · Z0 + 1

It trivially results from Theorem 1.1 that

Lemma 1.3. It holds for the system of exceptional curves {Ci} of a resolution of a rational
singularity that:

i) All Ci are singularity-free and rational.

ii) Ci ∩ Cj ∩ Ck = ∅ for pairwise distinct i, j, k.

iii) {Ci} is cycle-free.

Because of (iii), one can describe the negative definite intersection matrix
(
Ci · Cj

)
in an easy way, through a valued graph whose points correspond to the Ci and
are valued with +Ci · Ci, and whose edges connect pairs of vertices

{
Ci, Cj

}
with

Ci · Cj = 1. Because of (iv), this graph is a tree. In this way, for example due to
Theorem 1.2, the minimal resolutions of rational double points as valued graphs –
up to the sign of the values – results in exactly the Dynkin diagrams of those simple
Lie algebras, whose roots have the same length. ARTIN has listed the valued graphs
belonging to e = 3 in [2].

Definition. A regular resolution is a resolution of a 2-dimensional singularity with the
properties from Lemma 1.3.

1.2 This section handles the connection between rational singularities and near-
factorial local rings.

Definition. Let R be a zero-divisor-free commutative ring with unity. R is called factorial
if every element of R different from zero, which is not a unit, is a product of prime elements.
R is called near-factorial, if for each element of R different from zero, which is not a unit, a
power xn is a product of prime elements.

It holds that:

Proposition 1.4. Let R be a Krull ring, and C(R) be its divisor class group. Then it holds
that

i) R is factorial, exactly if C(R) = 0.
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ii) R is near-factorial, exactly if C(R) is a torsion group.

Statement (i) is well-known (see e.g. [3] §3).
Statement (ii) is proven in [29] §1, Satz 1.
Now let R be the local ring of a 2-dimensional normal singularity (X, x). Further-

more, let f : X′ → X be a resolution of singularities, C = f−1(x), and C1, . . . , Ck
be the irreducible components of C. Let the resolution be chosen so that the Ci are
singularity-free and intersect themselves transversely. From the usual short exact
sequence

0 → Z → OX′ → O∗
X′ → 0

and the corresponding long exact sequence of the image sheaves, MUMFORD deduced
an exact sequence

(1) 0 → H1(C, Z) →
(

R1 f∗OX′

)
x
→

(
R1 f∗O∗

X′

)
x
→ H2(C, Z) → 0.

Furthermore, there is a canonical surjection.

(2) (R1 f∗O∗
X′)x → C (OX,x) → 0,

whose kernel consists of the group of cycles ∑ niCi. Let M be the boundary of a “good”
neighborhood of x. (One such neighborhood can be constructed e.g. as in MUMFORD
or with respect to a local embedding of (X, x) as the intersection of X with a small ball
around x. ) Let H1(M, Z)0 be the torsion subgroup of H1(M, Z). Then, MUMFORD
obtains an exact sequence from 1 and 2.

(3) 0 → H1(C, Z) →
(

R1 f∗OX′

)
x
→ C (OX,x) → H1(M, Z)0 → 0.

From 3 and 1.4 (ii) (cf. STORCH [29] §6, Satz 1):

Proposition 1.5. A two-dimensional normal singularity (X, x) is rational, exactly if
OX,x is near-factorial.

Because of Lemma 1.3, in the case of rational singularities, an easy-to-prove corol-
lary of HIRZEBRUCH in [16] p. 04 is applicable towards the calculation of H1(M, Z),
and one obtains for rational (X, x)

C (OX,x) ∼= H1(M, Z)

ord C (OX,x) =
∣∣det

(
Ci · Cj

)∣∣ .

Corollary 1.6. A 2-dimensional analytic local ring OX,x is factorial, exactly if (X, x) is
rational and det

(
Ci · Cj

)
= ±1.

Remark. The statements of 1.5 and 1.6 applies allegedly for rings other than analytic
local rings. Towards the proof of corresponding generalizations, one must however replace the
trancendental methods with others. C.f. addition in the erratum.
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1.3 The following theorem about rational singularities and covers can be concluded,
due to Proposition 1.5, from a corresponding theorem of STORCH about near-factorial
local rings. ([29], § 3, Satz 2). I declare nevertheless another proof, because this
goes back directly to the definition of rational singularities, does not involve the
transcendental methods used in the proof of Proposition 1.5, and can be generalized
beyond the analytic case. This proof was shared to me by MUMFORD.

Proposition 1.7. Let (X, x) and (Y, y) be normal 2-dimensional singularities, u :
(X, x) → (Y, y) a cover, and (X, x) rational. Then, (Y, y) is rational.

Beweis. Without loss of generality, it is assumed that X resp. Y have singularities at
most in x resp. y. Let g : Y′ → Y be a resolution of singularities for Y. Y.m = g−1 ◦ u is
meromorphic; let Gm be the graph, p′ : Gm → X, and p′′ : Gm → Y′ be the projections.
Let n : X′ → Gm be a resolution of singularities for Gm. With v = p′ ◦ n and f = p′′ ◦ n
as well as h = g f , one has a commutative diagram

X′ Y′

X Y

f

v h g

u

One has (EGA III 12.2.4 or Tohuku) two spectral sequences

i) Epq
2 = Rpg∗ (Rq f∗OX′) ⇒ R∗h∗OX′ ,

ii) E′pq
2 = Rpu∗ (Rqv∗OX′) ⇒ R0h∗OX′ .

Because (X, x) is a rational singularty and v : X′ → X is a resolution of singu-
larities of X, [we have] Rqv∗OX′ = 0 for q > 0 and R0v∗OX′ = OX. Because u is
discrete and proper, [we have] Rpu∗F = 0 for p > 0 and each coherant sheaf F.
Thus, E′pq

2 = 0 for (p, q) ̸= (0, 0) and E′00
2 = u∗OX. Thus, Rkh∗OX′ = 0 for k > 0.

Since f and g have at most 1-dimensional fibers, Epq
2 = 0 for p > 1 or q > 1. Thus,

R1g∗ ( f∗OX) = E1,0
2 = E1,0

∞ = 0 because R1h∗OX′ = 0. Then, it also holds, as we
will show, that R1g∗OY′ = 0, because OY′ is a direct summand of f∗OX′ . Proof

of the latter: let X′ a−→ Y′′ b−→ Y′ be the Stein factorization of f . Y′′ is normal, a
connected, and b a cover. It holds that f∗OX′ = b∗a∗OX′ = b∗OY′′ . One has a na-
tural injection i : OY′ → b∗OY′′ , but also the ***trace mapping (Spurabbildung)
t : b∗OY′′ → OY′ . It holds that t ◦ i = c.Id (c = degree of the cover), and therefore OY′

is a direct summand. (Definition of t: for y in Y′, over which b is not branched, we
have (b∗OY′′)y = Oc

Y′,y, and t ( f1, . . . , fc) = f1 + · · ·+ fc. ) It is steadily continued in
the branching set ***??.
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§2. Singularities of Quotient Spaces

2.1 This section is a compilation of the results used in what follows, of CARTAN and
PRILL about quotients of complex spaces (cf. [7,22]). Let X be a normal complex space,
G a proper discontinuous group of automorphisms of X. The topological quotient
space X/G is provided as follows with a structure sheaf of functional germs OX/G:
Let p : X → X/G be the map of residual classes. Then, it holds for each open set U of
X/G that

OX/G(U) =
{

f | f ◦ p ∈ OX

(
p−1(U)

)}
.

Theorem 2.1 (Cartan). i) (X/G,OX/G) is a normal complex space.

ii) The map X → X/G is holomorphic, surjective, discrete, and proper for finite G, so it is
therefore an analytic branched cover.

Definition. A quotient singularity is a singularity which is isomorphic to a singularity
of a quotient X/G of a complex manifold X by a proper discontinuous group G.

The following statement about quotient singularities is well-known (CARTAN [7],
p. 97).

Lemma 2.2. Each quotient singularity is isomorphic to a singularity (Cn/G, 0), where
G is a finite subgroup of GL(n, C), and 0 is the point corresponding to the origin of Cn.

Beweis. The singularity of X/G where 0 is the corresponding point is isomorphic
to the corresponding singularity of X/G0, where G0 is the (finite) isotropy group of
0. Let (z1, . . . , zn) be complex coordinates in a neighborhood of 0 = (0, . . . , 0). One
introduces in an appropriate neighborhood of 0 new coordinates z′ through

z′ = ∑
g∈G0

g′−1gz

where g′ = (∂g/∂z)0. Then, G0 operates linearly with respect to these coordinates.

PRILL has completely classified the quotient singularities (Cn/G, 0) in [22]:

Definition. A subgroup G of GL(n, C) is called small, exactly if no g ∈ G has the
number 1 as an eigenvalue of multiplicity n − 1.

Theorem 2.3 (PRILL). i) Each quotient singularity is isomorphic to a singularity
(Cn/G, 0), where G is a finite small subgroup of GL(n, C).

ii) Let G and G′ be small subgroups of GL(n, C). Then, the singularities (Cn/G, 0) and
(Cn/G′, 0), exactly if G and G′ are conjugate.

One compares this also with the work of GOTTSCHLING [11]. If G ⊂ GL(n, C)
is an arbitrary finite [sub]group, and H is the normal subgroup generated by the
elements with 1 as eigenvalue of multiplicity n − 1, then Cn/H is singularity-free
and the “reduced” group Ḡ = G/H operates equivalently to a small [sub]group on
Cn/H.
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2.2 The proof presented in this work for the uniqueness of the icosahedral singula-
rity is a transcendental proof, because it uses the topology of the singularity: more
precisely, the local fundamental group. In this section, some well-known results in
this regard will be summarized.

Let X be a complex space, x ∈ X, and X be irreducible at x. A neighborhood U of
x in X is called after PRILL a good neighborhood, if there is a neighborhood basis {Ui} of
x, such that each Ui − x is a deformation retract of U − x. For all good neighborhoods
U, U − x has the same homotopy type, and one can thus in particular define the
local fundamental group πX,x of X at x. In order to make the definition also formally
independent from U, one can define

πX,x = lim π1(U − x),

whereby U goes through the system of neighborhoods of x, or what amounts to the
same thing, the cofinal subsystem of the good neighborhoods. Thereby is the above
definition to be interpreted as in [14], Exposé XIII and Commentaires à l’Exposé XIII.

The fundamental fact for 2-dimensional singularities is the following result from
MUMFORD.

Theorem 2.4 (MUMFORD). Let (X, x) be a 2-dimensional normal singularity and
πX,x = 1. Then, OX,x is regular.

Corollary 2.5 (MUMFORD). Let (X, x) be a 2-dimensional normal singularity and X a
topological manifold at x. Then, X is not singular at x.

Remark. From the examples, which I have described in [5], it comes out that there is
no statements corresponding to this corollary for higher dimensions. Therefore, some of the
following arguments for 2-dimensional singularities do not let themselves transfer to higher
dimensions.

Lemma 2.6. Let f : (X, x) → (Y, y) be a cover of normal singularities and πX,x be finite.
Then, πY,y is also finite.

Beweis. Without loss of generality, let f−1(y) = x. Let V1 be a good neighbor-
hood of y; U1 a good neighborhood of x with f (U1) ⊂ V1; furthermore V2 a good
neighborhood of y with V2 ⊂ V1 and f−1 (V2) ⊂ U1; finally, let U2 = f−1 (V2). Let
V−

i = Vi − {y} and U−
i = Ui − {x}. Let Ṽ1 → V−

1 be the universal cover of V−
1 and

Ũ1 → U−
1 the universal cover of U−

1 . Ũ1 and Ṽ1 are endowed with a complex structure
in a canonical way, such that the covering map is locally biholomorphic. Therefore,
the fiber products

Ũ2 = U−
2 ×U−

1
Ũ1 and Ṽ2 = V−

2 ×V−
1

Ṽ1 and
≈
Ui = Ũi ×V−

i
Ṽi

also reduced normal complex spaces. Because Ṽ1 → V−
1 is an unbranched topolo-

gical cover, so is
≈
U1 → Ũ1 an unbranched topological cover and has, due to the
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easy connection with Ũ1, a section. Then,
≈
U2 → Ũ2 also has a section, and this is a

holomorphic map s : Ũ2 →
≈
U2. Through composition of s with

≈
U2 → Ṽ2, one obtains

a commutative diagram of holomorphic maps.

Ũ2 Ṽ2

U−
2 V−

2

Claim: Ũ2 → Ṽ2 is surjective. Proof: The map is proper, discrete, holomorphic, so
the image is a (closed) analytic subset of Ṽ2 with the same dimension as Ṽ2, therefore
a connected component of Ṽ2. However, Ṽ2 is connected, because Ṽ1 is connected
and the inclusion of good neighborhoods V−

2 → V−
1 induces an isomorphism of the

fundamental groups.
Let Ox( f ) be the degree of f at x, and O (πX,x) resp. O

(
πX,y

)
the orders of the

local fundamental groups. Then, it follows, due to the surjectivity of Ũ2 → Ṽ2, from
the above diagram that

O
(
πY,y

)
≦ Ox( f )O (πX,x)

and therewith has the finiteness of πY,y been proven.

Let ( X, x ) be a 2-dimensional normal singularity, with a regular resolution with
system of exceptional curves C1, . . . , Ck. Let sij = Ci · Cj. Then, one can calculate
πX,x alone from the intersection matrix (sij), since it holds (cf. MUMFORD [21], p.12;
HIRZEBRUCH [16]) that:

Lemma 2.7. Under the above requirements, πX,x is generated with k elements e1, . . . , ek
with the following relations:

eie
sij
j = e

sij
j ei

esi1
1 esi2

2 . . . esik
k = 1.
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2.3 From Lemma 2.6 it follows in particular, that a singularity, which admits a
singularity-free cover, has a finite local fundamental group. The converse thereof
does not hold in general (cf. however PRILL [22], Proposition 5). For 2-dimensional
singularities, however, the following holds.

Proposition 2.8. Let (Y, y) be a -dimensional normal singularity. Then, the following
statements are equivalent:

i) (Y, y) is a quotient singularity.

ii) There exists a cover (X, x) → (Y, y) with regular OX,x.

iii) πY,y is finite.

Beweis. (i) implies (ii) due to Theorem 2.1 and (ii) implies (iii) due to Lemma 2.6.
To be shown is, that (iii) implies statement (i). Let V be a sufficiently small good
neighborhood of y in Y, V′ = V − {y}, and U′ → V′ the universal cover, which
has finite leaves because of the finiteness of πY,y. One can (e.g. following FOX [9])
continue this cover to a branched topological map U → V through adding a point
x in a definite way. Following the fundamental result of the work of GRAUERT and
REMMERT about complex spaces [12], one can endow U with a normal complex
Structure, so that U → V is an analytic branched cover. From the easy connection
with U′ follows πU,x = 1, and therefore OU,x is regular due to Satz 2.4 of MUMFORD.
πY,y operates through deck transformations holomorphically on U′ and also on U
with fixed point x and quotient U/πY,y = V. Thus, (V, y) is a quotient singularity.

2.4 a) Theorem 2.3 of PRILL leads back to the classification of the quotient singulari-
ties described in Proposition 2.8 via the enumeration of the conjugacy classes of small
subgroups of GL(2, C). In order to obtain further information about the quotient
singularities, one can e.g. calculate their local rings using invariant theory. This is
for the subgroups of SL(2, C) that were carried out e.g. from KLEIN [19], Kap.II, §
9-13 and DUVAL [22], p. 94-112. Another method consists of resolving the quotient
singularities. One obtains from the resolution, following Theorems 1.2 and 1.7, the
multiplicities and embedding dimension of the local ring. It shows that the quotient
singularities are classified also by the intersection matrix of their resolutions. This
section handles the connection between the two mentioned classifications.

b) The intersection matrix can be described through the corresponding valued
trees. It will turn out, that for the quotient singularities the trees are all straight-shaped
or star-shaped with three branches. These sorts of valued trees can be described in
the following manner.

Definition. Let n and q be coprime whole numbers 0 < q < n. Then, let ⟨n, q⟩ be the
valued tree
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-b1 -b2 -b3 -br−1 -br

where the bi are whole numbers, which are unambiguously characterized through the
following relations:

bi ≧ 2 for i = 1, . . . ,r

n
q
= b1 −

1

b2 −
1

b3
. . .

1

br−1 − 1
br

(4)

Following [23], p. 61, ⟨n, q⟩ and ⟨n′, q′⟩ are the same valued trees exactly if n = n′

and q = q′ or qq′ ≡ 1(n).

Definition. Let ⟨b; n1, q1; n2, q2; n3, q3⟩ be the valued tree

−b1
r1

−b1
2 −b1

1 −b −b2
1 −b2

2 −b2
r2

−b3
1

−b3
r3

where the b, bi
k are whole numbers with b, bi

k ≧ 2 and the whole numbers ni, qi with
(ni, qi) = 1 and 0 < qi < ni are given through the following chained fractions.

ni

qi
= bi

1 −
1

bi
2 −

1

bi
3

. . .
1

bi
r−1 −

1
bi

r

.
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c) It is clear, that one can describe the subgroups of GL = GL(2, C) in the following
manner: let SL ⊂ GL be the special linear group, ZL ⊂ GL the centre and ψ :
ZL × SL → GL the multiplication. Let H1 resp. H2 be subgroups of ZL resp. SL
and Ni be normal subgroups of Hi, for which H1/N1 and H2/N2 are isomorphic; let
φ : H2/N2 → H1/N1 be an isomorphism. Let h̄i denote the residue class of hi in
Hi/Ni and

H1 ×φ H2 =
{
(h1, h2) ∈ H1 × H2 | h̄1 = φ

(
h̄2
)}

the fibered product. Finally, let

(H1, N1; H2, N2)φ = ψ
(

H1 ×φ H2
)

.

Each finite subgroup of GL is of the form (H1, N1; H2, N2)φ, and it is not difficult to
notice that the conjugacy class depends on H1, N1; H2, N2)φ. In fact, it turns out that
in almost all cases it does not depend on ϕ. In these cases, the φ is omitted therefrom,
and (H1, N1; H2, N2) denotes a fixed representation of the corresponding conjugacy
class.

The only case, in which φ plays a role, is that where H1 and H2 are cyclic. In
this case, however, the following description of the group is more practical. One
sees easily, that each non-trivial small [sub]group (H1, N1; H2, N2)φ with cyclic Hi is
conjugate to one of the defined-as-follows cyclic groups Cn,q:

Cn,q =

{(
e2πi/n 0

0 e2πiq/n

)}
0 < q < n, (n, q) = 1

Cn,q and Cn′,q′ are naturally conjugate exactly if n′ = n and q = q′ or qq′ ≡ 1(n).
The Groups Hi are denoted in the following manner:

Zk the cyclic group of order k in ZL,
Ck the cyclic group of order k in SL,
Dk the binary dihedral group of order 4k,
T the binary tetrahedral group,
O the binary octahedral group,
I the binary icosahedral group.

The subgroups of SL in this list are naturally determined only up to conjugation.
Let one representation be fixed for each, and indeed so, that one has normal subgroups
C2n ◁Dn and D2 ◁ T.
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d) Following these preparations, the 2-dimensional singularities can be classified
in the following manner up to an analytic isomorphism, where each of the regular
singularties resp. the trivial group resp. the empty graph are omitted.

Theorem 2.9. i) The 2-dimensional quotient singularities are classified through the
conjugacy classes of small subgruops of GL(2, C). Each small subgroup of GL(2, C) is
conjugate to one of following groups:

Cn,q 0 < q < n, (n, q) = 1
(Z2m,Z2m;Dn,Dn) (m, 2) = 1, (m, n) = 1
(Z4m,Z2m;Dn,C2n) (m, 2) = 2, (m, n) = 1
(Z2m,Z2m;T, T) (m, 6) = 1
(Z6m,Z2m;T,D2) (m, 6) = 3
(Z2m,Z2m;O,O) (m, 6) = 1
(Z2m,Z2m; I, I) (m, 30) = 1.

ii) Cn,q and Cn′,q′ are conjugate exactly if n = n′ and q = q′ or qq′ ≡ 1(n). The remaining
groups are not conjugate.

Beweis. This theorem is a immediate consequence from Theorem 2.3 of PRILL, of
the definition of small [sub]groups and of the well-known classification of the finite
subgroups of GL(2, C) (cf. e.g. [8] p. 57).

Theorem 2.10. i) The 2-dimensional quotient singularities are exactly the 2-dimensional
normal singularities, which have a regular resolution with one of the following va-
lued graphs: ⟨n, q⟩ with 0 < q < n and (n, q) = 1, ⟨b; n1, q1; n2, q2; n3, q3⟩ with
b ≧ 2, 0 < qi < ni and (ni, qi) = 1, where (n1, n2, n3) is a platonic triple (2, 2, n),
(2, 3, 3), (2, 3, 4), (2, 3, 5).

ii) These valued graphs of the minimal resolution classify the quotient singularities up to
an analytic isomorphism.

Beweis. Theorem 2.10 is an immediate consequence of Lemma 2.7 and Proposition
2.8 and the following theorem.

Theorem 2.11. The following table contains in column 1 the small subgroups G of
GL(2, C), in column 2 the valued graphs ΓG of the minimal resolution of the quotient
singularity (C2/G, 0), in column 3 the multiplicity eG of the local ring OC2/G,0, and in
column 4 the divisor class groups DG = G/G′ of OC2/G,0.
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G ΓG eG DG

Cn,q ⟨n, q⟩ 0 < q < n, (n, q) = 1 2 + Σ (bi − 2) Zn

(Z2m,Z2m;Dn,Dn) ⟨b; 2, 1; 2, 1; n, q⟩ m = (b − 1) n − q,
2 ∤ m 2 + Σ (bi − 2)

Z2m × Z2
2 | n

(Z4m,Z2m;Dn,C2n) ⟨b; 2, 1; 2, 1; n, q⟩ m = (b − 1)n − q,
2 | m

Z4m
2 ∤ n

(Z2m,Z2m;T,T) ⟨b; 2, 1; 3, 2; 3, 2⟩ m = 6(b − 2) + 1 b Z3m

(Z2m,Z2m;T,T) ⟨b; 2, 1; 3, 1; 3, 1⟩ m = 6(b − 2) + 5 b + 2 Z3m

(Z6m,Z2m;T,D2) ⟨b; 2, 1; 3, 1; 3, 2⟩ m = 6(b − 2) + 3 b + 1 Z3m

(Z2m,Z2m;O,O) ⟨b; 2, 1; 3, 2; 4, 3⟩ m = 12(b − 2) + 1 b Z2m

(Z2m,Z2m;O,O) ⟨b; 2, 1; 3, 1; 4, 3⟩ m = 12(b − 2) + 5 b + 1 Z2m

(Z2m,Z2m;O,O) ⟨b; 2, 1; 3, 2; 4, 1⟩ m = 12(b − 2) + 7 b + 2 Z2m

(Z2m,Z2m;O,O) ⟨b; 2, 1; 3, 1; 4, 1⟩ m = 12(b − 2) + 11 b + 3 Z2m

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 2; 5, 4⟩ m = 30(b − 2) + 1 b Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 2; 5, 3⟩ m = 30(b − 2) + 7 b + 1 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 1; 5, 4⟩ m = 30(b − 2) + 11 b + 1 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 2; 5, 2⟩ m = 30(b − 2) + 13 b + 1 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 1; 5, 3⟩ m = 30(b − 2) + 17 b + 2 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 2; 5, 1⟩ m = 30(b − 2) + 19 b + 3 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 1; 5, 2⟩ m = 30(b − 2) + 23 b + 2 Zm

(Z2m,Z2m; I, I) ⟨b; 2, 1; 3, 1; 5, 1⟩ m = 30(b − 2) + 29 b + 4 Zm

Beweis. (a) First, the calculation of ΓG : In the case that G is cyclic, i.e. Cn,q, ΓG
is already calculated in [15] using the Hirzebruch-Jung algorithm, i.e. using the
modified continued fraction expansion (4) for n/q. The general case can be reduced
to the cyclic case as follows. Let X be the surface resulting from C2 by σ-process
in 0 and C be the exceptional curve of X. The group G operates on X and X/G is a
modification of C2/G in which the singular point is replaced by the rational curve
C′ corresponding to C. According to 2.3, the singular points of X/G correspond to
the points x ∈ C for which the reduced isotropy group Ḡx is not trivial. These are,
if G = (H1, N1; H2, N2)φ, at most the points for which the image of H2 in PGL(1, C)

has nontrivial isotropy groups as transformation group of P1. This is known to be
the case for exactly 2 point groups if H2 is cyclic, and for 3 point groups in all other
cases. The isotropy groups of H2 are cyclic, the Gx is therefore equivalent to certain
(Z2mr,Z2m;C2nr,C2n)φ and the Ḡx is therefore equivalent to certain Cn,q, so that one can
apply the result of HIRZEBRUCH. I will skip the calculation of the n, q. Due to Lemma
1.3 it is clear that at the minimal resolution X̃ of X/G the curve C0 corresponding to
C′ is also free of singularities and rational and intersects the other exceptional curves
transversally. One easily sees that C0 actually intersects as claimed in 2.11. Thus, in the
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noncyclic case, to determine ΓG = ⟨b; n1, q1; n2, q2 ; n3, q3⟩ only b = −C0 · C0 remains
to be calculated. Let G = (Z2mr,Z2m ; H2, N2) and h be the order of the image of G
in PGL(1, C). From the fact that the divisor of a holomorphic function on X̃ must
intersect every exceptional curve with multiplicity 0, one easily obtains the following
formula for b

b =
q1

n1
+

q2

n2
+

q3

n3
+

2m
h

.

(b) The calculation of eG follows from that of ΓG because of Theorem 1.2 and Propo-
sition 1.7. For, if Z0 = ∑ riCi is the fundamental cycle of a rational singularity and
bi = −Ci · Ci, then from 1.2 and 1.3 follows

e = 2 + ∑ ri (bi − 2) .

One easily sees, that for the fundamental cycle of all ΓG from 2.11 with the valuations
−bi from bi > 2 it follows that ri = 1. Therefore,

eG = 2 + ∑ (bi − 2)

and the values of the table result from that.
(c) The divisor class group DG of the rational singularity (X, x) =

(
C2/G, 0

)
is,

according to the remarks following Proposition 1.5, isomorphic to H1
(
S3/G, Z

)
, i.e.

to the quotient of G = πX,x with respect to its commutator [sub]group G′. This allows
one to calculate DG = G/G′ without difficulty from G.

2.5 As a trivial consequence from Theorem 2.10, one obtains the following gene-
ralization of Satz 1 in [4]. In deviation from the usual word usage, it is established
that:

Definition. Let (X, x) be a 2-dimensional normal singularity with a minimal regular
resolution and associated valued graph Γ. (X, x) is rigid, if (X, x) is the unique singularity,
up to isomorphism, with a regular resolution with valued graph Γ.

Of course, ( X, x ) cannot be rigid if Γ has a point that is a vertex of more than 3
1-simplices. In terms of examples,

−2

−2

−2

−2

−4
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belongs to non-rigid rational singularities. However, even if (X, x) is rational and
every point of Γ lies on at most 3 1-simplices, need (X, x) not be rigid. One example
for such a Γ is, following a letter message from TJURINA and ARTIN:

−2 −2

−2 −2

−2 −2

−3

−3

−3
−4

It is therefore that the following trivial consequence from Theorem 2.10 all the
more remarkable.

Corollary 2.12. The 2-dimensional quotient singularities are rigid.

This corollary is of course the reason for the the definition of rigidity given above.
It would have been more natural and weaker to require, that (X, x) is determined
through the first infinitesimal neighborhood of the system of exceptional curves. —- I
would still like to note, that TJURINA is said to have shown: All rational triple points
are rigid.

2.6 This section elucidates the connection between the analytic classification of the
quotient singularities on one hand, and the topological investigations of SEIFERT and
THRELFALL about the discontinuity domains of finite ***bewegungsgruppen of the
three-dimensional sphere and about Seifert fiber spaces as in V.RANDOWS results
about tree manifolds on the other hand.

(a) Every quotient singularity ( C2/G, 0 ) has the 3-dimensional closed orientable
manifold MG = S3/G as boundary of a good neighborhood, where S3 is the standard
3-sphere in C2 considered as a G-subspace. In [28], Ch. III, it is shown that the totality
of the neighborhood boundaries MG obtained in this way coincides with the set of
all manifolds S3/H, where H is an arbitrary finite subgroup of SO(4). If H is fixed
point free on S3, then S3/H is called a spherical space form following HOPF. The
homeomorphism problem for these manifolds is completely solved: If G is cyclic,
then MG is a lens space, more precisely: MCn,q = L(n, q), and according to BRODY

[6] goes: L(n, q) and L (n′, q′) are homeomorphic exactly if n = n′ and q ≡ ±q′(n) or
qq′ ≡ ±1(n). For non-cyclic small subgroups G of GL(2, C) the classifications agree
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up to conjugation on the one hand and up to abstract isomorphism on the other hand,
as can easily be shown through consideration of G/G′ and G/ center (G) (cf. [28],
§6). Hence, for non-cyclic small G1, G2, the manifold MG1 is homeomorphic to MG2
exactly if G1 is conjugate to G2. For a two-dimensional normal singularity (X, x) with
non-cyclic finite πX,x, the analytic structure is thus uniquely determined through the
topological, up to isomorphism.

(b) Let U be the full torus

U =
{
(z1, z2) ∈ C2||z1 |= 1, |z2| ≦ 1}

and V the circular disk

V =
{
(z1, z2) ∈ C2||z1 |= 0, |z2| ≦ 1} .

U is oriented, and indeed, if z1 = e2πiφ and z2 = x + iy, through the sequence
of coordinates (φ, x, y). Let f : U → V be the projection, that is f (z1, z2) = z2. The
groups Cn,q defined in 2.4 operates on U and V as subspaces of C2. Let fn,q : U/Cn,q →
V/Cn,q be the map of quotient spaces induced by f , and U/Cn,q be provided with the
orientation induced from U.

Definition. A Seifert fiber space is a map f : X → Y of a three-dimensional closed
manifold X out of a 2-dimensional manifold Y with 1-spheres as fibers, which over suitable
neighborhoods of the point of Y is either locally trivial or of the same type as an fn,q. (For
generalizations cf. [18].)

The Seifert fiber spaces with an orientation for X and orientable Y are classified in
[27] through a system of invariants

(O, o; p | β; α1, β1; . . . ; αn, βn) .

Here, O resp. o refer to the orientability of X resp. Y, and p is the genus of Y. The
whole number β is the closure invariant (for the definition cf. [27], p.181), and the
coprime whole numbers αi, βi with 0 < βi < αi establish the oriented type fαi,βi with
the exceptional fibers. With reversal of the orientation,

(O, o; p | β; α1, β1; . . . , αr, βr)

changes into
(0, a; p | −β − r; α1, α1 − β1; . . . ; αr, αr − βr) .
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Now, let G be a finite small subgroup of GL(2, C). The group G operates on S3

and P1, and thereby one obtains from the Hopf fibration S3 → P1 a Seifert fiber space

S3/G → P1/G.

MG = S3/G is oriented as the neighborhood boundary of a complex singularity (for
the orientation of the boundary of an oriented manifold see the textbook of topology
by SEIFERT-THRELFALL), and thus MG is an oriented Seifert fiber space. The Seifert
invariants of MG have been already calculated in [28]. Through comparison with
Theorem 2.11, one obtains:

Lemma 2.13. If the singularity (C2/G, 0) has a resolution with the valued graph ΓG =
⟨b; n1, q1; n2, q2; n3, q3⟩, then its neighborhood boundary MG as a Seifert fiber space has the
invariant

(O, o; 0 | −b; n1, q1; n2, q2; n3, q3) .

In [27] all ( O, o; 0 | β; α1, β1; . . . ; αr, βr ) with finite fundamental group were
enumerated. By comparison with the fiber invariants of MG determined in [28] or in
2.11 and 2.13, the main theorem of [28] follows: The neighborhood boundaries of the
2-dimensional quotient singularities are precisely the total spaces of the orientable
Seifert fibrations over S2 with finite fundamental group.

(c) If a 2-dimensional normal singularity has a regular resolution with valued
tree Γ, then a suitable neighborhood boundary M is the tree manifold corresponding
to Γ in the sense of V. RANDOW [23] (cf. also [16], [17]). V.RANDOW proves in [23],
Ch. V, that every orientable Seifert fiber space over S2 is homeomorphic to a star-
shaped tree manifold, and that conversely every star-shaped tree manifold with a
certain additional condition allows a Seifert fibration. This fibration is in certain cases
uniquely determined by the tree structure or even by the homeomorphism type (cf.
also [30]), for example, when the fundamental group is finite and non-cyclic or when
the fiber space is a Poincaré space. Therefore, one could have also derived Theorem
2.11 from the results of [28], § 8 and [23], Ch. V. However, given the complexity of the
topological arguments, I considered a direct analytical proof desirable.

(d) Following a lemma in [16], a 2-dimenional singularity, whose neighborhood
boundary M is a Poincaré space, has a regular resolution. M is thus a tree manifold.
If M is star-formed, then so is it in a unique way a fibered Poincaré space.
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The fibered Poincaré spaces have been determined in [27], §12. One interesting
class of fibered Poincaré spaces, which includes those constructed by DEHN and
considered in [27], §13, are the neighborhood boundaries of singularities Σa1,a2,a3 ,
defined in [5], where the ai are pairwise coprime.

Σa1,a2,a3 =
{
(z1, z2, z3) ∈ C3 ∣∣za1

1 + za2
2 + za3

3 = 0, |z| = 1
}

.

These are Poincaré spaces following [5], p. 6, and they are obviously fibered with 3
exceptional fibers through the operation of S1 = {t ∈ C | |t| = 1} with

(z1, z2, z3) → (ta2a3z1, ta1a3z2, ta1a2z3) .

§3. The Icosahedral Singularity

3.1 This paragraph is about the question of which analytic local rings are factorial.
It appears that the answer to this question for different dimensions turn out very
differently.

For dimOX,x ≧ 4, one has the following Theorem of GROTHENDIECK (cf. [14],
Exposé XI, Cor. 3.14 and [29], §5).

Theorem 3.1 (GROTHENDIECK). Let (X, x) be a normal complete intersection and OX,y
be factorial for all y except for a 4-codimensional analytic [sub]set. Then, OX,x is factorial.

For the case of a isolated hypersurface singularity, one can also deduce this theo-
rem easily from a result of MILNOR (cf. [5], p. 8).

Among the local rings of 3-dimensional hypersurface singularity, there are both
infinitely many non-factorial and infinitely many factorial rings. In terms of examples,
goes (cf. [5], Korollar 1)

Proposition 3.2. Let a1, a2, a3, a4 be natural numbers, one of which is relatively prime to
the rest. Then, the following analytic local ring is factorial

C {x1, x2, x3, x4} /
(
xa1

1 + xa2
2 + xa3

3 + xa4
4

)
.

3.2 Let O = OC2,0 be the local ring of C2 at 0 and Ô its completion. The binary
icosahedral group I operates on C2 with fixed point 0, and hance also on O and Ô.
Let OI resp. ÔI be the subrings of I-invariant elements of O resp Ô. Naturally,

OI ∼= OC2/1,0 and ÔI ∼= ÔI.

KLEIN has determined in [19], Part I, Ch. II, §13 explicitly with invariant theory, three
generators for OI and the consisting relations between them. It follows

OI ∼= C{x, y, z}/
(

x2 + y3 + z5
)

ÔI ∼= CJx, y, zK/
(

x2 + y3 + z5
)

.
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Theorem 3.3. The rings O and OI are, up to isomorphism, the unique factorial two-
dimensional analytic local ring.

Beweis. By Theorems 1.4 and 2.11, O and OI are factorial. Now, conversely, let (
X, x ) be a 2-dimensional singularity and OX,x be factorial and not regular. OX,x is
normal as a factorial Noetherian ring. Let f : X′ → X be the minimal resolution of
the singularities of X and

f−1(x) =
n⋃

i=1

Xi

where the Xi are the irreducible components. Let S =
(
Xi · Xj

)
be the intersection

matrix. By Corollary 1.6, (X, x) is rational and det S = ±1. Let Z = ∑ riXi be the
fundamental cycle. Furthermore, cycles Zj = ∑ rijXi are defined by the condition
Zi · Xk = −δik. From det S = ±1 it follows

(1) rij ∈ Z.

The symmetry of S implies

(2) rij = rji.

Since S is negative definite and Xi · Xj ≧ 0 for i ̸= j, and since Zi · Xk ≦ 0, it follows
(cf. [2], p. 130)

(3) rij > 0.

The minimality of Z implies due to (1) and (3), that Z ≦ Zi for i = 1, . . . , n. On
the other hand, the relation Z = −∑ (Z · Xi) Zi with Z · Xi ≦ 0 follows due to the
definition of the Zi. Hence, it has to hold for a k ∈ {1, . . . , n} that Z = Zk, so

(4) ri = rlk for i = 1, . . . , n.

Z ≦ Zj implies ri ≦ rij. Hence, it follows in particular from (2) and (4): rk = rkk ≦
rkj = rjk = rj and so

(5) rk ≦ rj for j = 1, . . . , n.

By Theorem 1.1 goes

(6) Z · Z + Z · K + 2 = 0.

By Lemma 1.3 i), the Xi are singularity-free and rational, and therefore

(7) Xi · K = −2 − Xi · Xi.

The equations (4), (6), (7) and the definition of Zk imply

(8) rk = 2 −
n

∑
i=1

(Xi · Xi + 2) ri.
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However, due to the minimality of the resolution f ,

(9) − (Xi · Xi + 2) ≧ 0.

The relations (5), (8), and (9) imply

(10) Xi · Xi = −2 for i = 1, . . . , n.

By the classical classification of 2-valued Dynkin diagrams, it follows for the valued
graph Γ of the resolution f from (10) and det S = ±1

Γ = ⟨2; 2, 1; 3, 2; 5, 4⟩.

Hence, it follows from Theorems 2.10 and 2.11

(X, x) ∼=
(

C2/I, 0
)

,

and so
OX,x

∼= OI.

q.e.d.

3.3 (a) While so far in this work only analytic local rings, i.e. local rings of complex
spaces, have been considered, in this last section some statements about other factorial
local rings shall be derived from the main theorem 3.3. There, I have used not-easy-
to-prove comparable theorems of ARTIN and HIRONAKA. The following proofs likely
allow simplification.

Corollary 3.4. The local rings Ô and ÔI are, up to isomorphism, the unique factorial
complete two-dimensional local rings with residue field C.

Beweis. Let R be a factorial complete 2-dimensional local ring with residue field
C. Then R is normal as a factorial Noetherian ring. According to ARTIN, every com-
plete normal 2-dimensional local ring with a residue field k of characteristic 0 is the
completion of a local ring of an algebraic surface over k (see [2’], p.36). Thus, let Ra
be an algebraic-geometric local ring over C with R = R̂a. According to GAGA [30],
Prop.3, one can, in a canonical way, embed Ra into an analytic local ring of the same
dimension Rh, so that it holds for the completion R̂a = R̂h. Rh is, according to MORI,
factorial, since R̂h is factorial (cf. e.g. [3], §3, n0 7, Prop. 4). Thus, by Theorem 3.3
follows Rh = OI and therefore R = R̂h = ÔI. That ÔI is factorial follows e.g. from
[25], Satz 1.

(b) SAMUEL has stated the following conjecture in [24], p. 171: If R is a complete
factorial local ring, the formal power series ring RJXK is factorial. Examples by SAMU-
EL and others show that the assumption of completeness cannot be omitted. To my
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knowledge, the conjecture has not yet been fully decided. For example, it is correct
for R with codh R ≧ 3 (SCHEJA [26], Theorem 2). For dim R = 2, Corollary 3.4 shows
that the conjecture is correct under the additional assumption that the residue class
field is C. SCHEJA proves in [26], Theorem 4, that ÔIJXK is factorial.

(c) There are many algebraic-geometric local rings over C, i.e. here: localizations
of a finitely generated algebra over C with respect to a maximal ideal, which have
dimension 2 and are factorial. In terms of examples, according to SAMUEL, the 2-
dimensional algebraic-geometric local rings(

C [x1, x2, x3] /
(
xa1

1 + xa2
2 + xa3

3
))

m
,

where m is the maximal ideal generated by x1, x2, x3, are factorial, if the natural
numbers ai are pairwise coprime (cf. [3], §3, p. 99, Exercise 7 and §3, n0 4, prop. 3).
However, the completion of these local rings

CJx1, x2, x3K/
(
xa1

1 + xa2
2 + xa3

3
)

are by Corollary 3.4 not factorial, if ai > 1 and {a1, a2, a3} ̸= {2, 3, 5}. The following
corollary shows, that the factoriality first gets lost not during completion, but rather
already during Henselization.

Corollary 3.5. Let the 2-dimensional local ring R be the Henselization of an algebraic-
geometric local ring over C. Then, R is factorial exactly if the completion R̂ is isomorphic to
Ô or ÔI.

Beweis. Let R be the Henselization R̃a of the algebraic-geometric local ring Ra.Ra
is Noetherian and therefore R̃a is also Noetherian, and since it is also factorial, R̃a is
normal. Then R̂a and the analytic local ring Rh corresponding to Ra are also normal.
Therefore, the spectra of these local rings outside the closed points m̃ resp. mh resp. m̂
are regular, and therefore (cf. [14], ExposéXI, Cor.3.8) the divisor class groups of these
local rings are the same as the Picard groups of the ***gelochten spectra. According to
an unpublished result by HIRONAKA, the following generally applies for a local ring
Ra of an isolated singularity of an algebraic variety over C

Pic
(

Spec
(

R̃a

)
− m̃

)
= Pic (Spec (Rh)−mh) = Pic

(
Spec

(
R̂a

)
− m̂

)
.

R is thus factorial, exactly if R̂ is factorial, and therefore the corollary follows trivially
from 3.4.

Addition to the correction. Under the use of a theorem of ARTIN, 3.5 can be improved in the following
manner. If the Henselization of a 2-dimensional algebraic-geometric local ring over C is factorial, then
it is isomorphic to the Henselization of C[x, y](x,y) or of

(
C[x, y, z]/x2 + y3 + z5)

(x,y,z).
JOSEPH LIPMAN has shared with me, that at the same time of the following generalizations of

results of this work, he has obtained: Corollary 1.6 holds for each excellent henselian 2-dimensional
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normal local ring R with algebraically closed residue field k. If such an R is thus factorial, then the
minimal resolution has by §3 the valued graph ⟨2; 2, 1; 3, 2; 5, 4⟩. For char k ̸= 2, 3, 5, the maximal ideal
m is generated by a system of parameters x, y, z with x2 + y3 + z5 = 0, and an analogue to Corollary
3.4 holds therefore, under these general requirements.
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