Rational Singularities of Complex Surfaces

Egbert Brieskorn (Bonn)

Introduction

The main result of this work is the following theorem: There is only one non-
regular two-dimensional analytic local ring which is factorial. This factorial local ring
is the local ring of the singular point in the quotient space formed by the action of the
binary icosahedral group on the komplex plane. Following KLEIN, this local ring is
C{x,y,z}/ (x* + y® + 2°). That this local ring is factorial was shown by MUMFORD
in his work about the topology of normal singularities of algebraic surfaces. I will
also use this result from the work of MUMFORD, in order to show the uniqueness
of this factorial ring in §3. Moreover for that, I will need the results of ARTIN about
rational singularities, which will be referred to in §1.

The importance of rational singularities in this context arises from the fact that
they are precisely the two-dimensional normal singularities with a near-factorial local
ring. There are a number of recent investigations about near-factorial and factorial
local rings — for near-factorial local rings, e.g. the works of KOESTNER and STORCH
[20, 29], for factorial local rings a few works of SAMUEL, e.g. [24], and SCHEJA [25,26].
There already, one also finds special cases of the theorem about the uniqueness of the
icosahedral singularity.

The icosahedral singularity belongs to a special class of singularities, namely the
singularities of quotient spaces which arise from the action of a proper discontinuous
group on a two-dimensional complex manifold. In §2, I have completely classified
these singularities under application of the results of HIRZEBRUCH, MUMFORD, and
PRILL. The classification is only an étude, according to the general results of PRILL
about quotients of complex spaces [22]. Nevertheless is it, apart from its importance
for the proof of the main theorem, also interesting for a few reasons:

o Firstly, it represents a systematic summary of the results of numerous investiga-
tions by GODEAUX on quotient singularities.

¢ Secondly, the connection between the analytic structure of these singularities
and their many-times investigated topological structure is clarified.

¢ Thirdly, it results immediately from the classification that the singularities of
quotient spaces from 2-dimensonal complex manifolds are rigid.
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I have already derived one special case of this result, the rigidity of rational double
points, from a theorem of KIRBY in [4], and TJURINA has recently proven the rigidity
of certain other rational singularities with the methods of GRAUERT and HIRONAKA.

I thank MICHAEL ARTIN and DAVID MUMFORD sincerely for these discussions,
out of which this work materializes.

§1. Rationale Singularities

1.1 This section is a compilation of some of Artin’s results on rational singularities
(cf. [1, 2]). Let (X, x) be a 2-dimensional normal singularity, i.e. let (X, x) be the germ
of a 2-dimensional reduced complex space and the local ring Ox , at the point x is
normal. (The terminology used in what follows regarding the germ (X, x) is hopefully

understandable without further explanations and can be made precise by necessity;
cf. also [13]).

Definition. (X, x) is a rational singularity, if for a resolution f : X' — X the first direct
image R £, Oy of the structure sheaf Ox: of X' vanishes at x.

One obtains a criterion for the rationality of (X, x) as follows. Let f : X’ — X be a
resolution of the singularity. Let the curves Cj, .. ., Ci be the irreducible components
of f~1(x). A cycle Z = r1Cy + - - - +1:Cy is called positive, if not all r; vanish and
ri 2 0fori =1,...,k The set of those positive cycles Z partially ordered by this
definition, whose intersection numbers Z - C; < 0 fori = 1, ..., k, contains a minimal
element Z.

Definition. Z is called the fundamental cycle of the resolution f of the singularity
(X, x).

The virtual class p(Z) for a cycle Z is defined as usual through the following
formula, in which K is the canonical divisor of X’,

p(Z):%(Z-Z+K-Z)+1.

Now let f be an arbitrary fixed resolution of (X, x) and Z; the fundamental cycle.
Then, it holds ([2] Prop. 1, Theorem 3, Corollary 6) that:

Theorem 1.1 (Artin). The following statements are equivalent:
i) (X, x) is rational.

ii) p(Z) = 0 for each positive cycle Z.

iii) p (Zy) = 0 for the fundamental cycle Zy.



Theorem 1.2 (Artin). Let (X, x) be a rational singularity, Ox » its local ring, and m
its maximal ideal. Then, the following holds for the multiplicity e (Ox ) and the embedding
dimension ebdim (Ox ) = dimp, /mm/m?, resp.

e (OX,x) = —ZO . Zo
ebdim (OX,x) =—Zo-Zp+1

It trivially results from Theorem 1.1 that

Lemma 1.3. It holds for the system of exceptional curves {C;} of a resolution of a rational
singularity that:

i) All C; are singularity-free and rational.
it) C; N C;NCy = I for pairwise distinct i, j, k.

iii) {C;} is cycle-free.

Because of (iii), one can describe the negative definite intersection matrix (Ci . C]-)
in an easy way, through a valued graph whose points correspond to the C; and
are valued with 4C; - C;, and whose edges connect pairs of vertices {Ci, C]-} with
Ci - C; = 1. Because of (iv), this graph is a tree. In this way, for example due to
Theorem 1.2, the minimal resolutions of rational double points as valued graphs —
up to the sign of the values — results in exactly the Dynkin diagrams of those simple
Lie algebras, whose roots have the same length. ARTIN has listed the valued graphs
belonging to e = 3 in [2].

Definition. A reqular resolution is a resolution of a 2-dimensional singularity with the
properties from Lemma 1.3.

1.2 This section handles the connection between rational singularities and near-
factorial local rings.

Definition. Let R be a zero-divisor-free commutative ring with unity. R is called factorial
if every element of R different from zero, which is not a unit, is a product of prime elements.
R is called near-factorial, if for each element of R different from zero, which is not a unit, a
power x" is a product of prime elements.

It holds that:

Proposition 1.4. Let R be a Krull ring, and C(R) be its divisor class group. Then it holds
that

i) R is factorial, exactly if C(R) = 0.



it) R is near-factorial, exactly if C(R) is a torsion group.

Statement (i) is well-known (see e.g. [3] §3).

Statement (ii) is proven in [29] §1, Satz 1.

Now let R be the local ring of a 2-dimensional normal singularity (X, x). Further-
more, let f : X’ — X be a resolution of singularities, C = f ~(x), and Cy,...,Cx
be the irreducible components of C. Let the resolution be chosen so that the C; are
singularity-free and intersect themselves transversely. From the usual short exact
sequence

02— Ox — 0% —0

and the corresponding long exact sequence of the image sheaves, MUMFORD deduced
an exact sequence

(1) 0— HY(C,Z) — (le*ox,) = (le*ogz,) — H%(C,Z) — 0.
X X

Furthermore, there is a canonical surjection.

(2) (R'f.0%)x — C(Oxx) =0,

whose kernel consists of the group of cycles ) n;C;. Let M be the boundary of a “good”
neighborhood of x. (One such neighborhood can be constructed e.g. as in MUMFORD
or with respect to a local embedding of (X, x) as the intersection of X with a small ball
around x. ) Let H1(M, Z), be the torsion subgroup of Hi(M, Z). Then, MUMFORD
obtains an exact sequence from 1 and 2.

3) 0— HY(C,Z) » (le*ox,) — C(Oxy) = Hi(M,Z)o — 0.

From 3 and 1.4 (ii) (cf. STORCH [29] §6, Satz 1):

Proposition 1.5. A two-dimensional normal singularity (X, x) is rational, exactly if
Ox x is near-factorial.

Because of Lemma 1.3, in the case of rational singularities, an easy-to-prove corol-
lary of HIRZEBRUCH in [16] p. 04 is applicable towards the calculation of H;(M, Z),
and one obtains for rational (X, x)

C(Oxy) =H1(M,Z)
ordC (OX,x) = |det (C,‘ . C]) | .

Corollary 1.6. A 2-dimensional analytic local ring Ox . is factorial, exactly if (X, x) is
rational and det (C; - C;) = *1.

Remark. The statements of 1.5 and 1.6 applies allegedly for rings other than analytic
local rings. Towards the proof of corresponding generalizations, one must however replace the
trancendental methods with others. C.f. addition in the erratum.
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1.3 The following theorem about rational singularities and covers can be concluded,
due to Proposition 1.5, from a corresponding theorem of STORCH about near-factorial
local rings. ([29], § 3, Satz 2). I declare nevertheless another proof, because this
goes back directly to the definition of rational singularities, does not involve the
transcendental methods used in the proof of Proposition 1.5, and can be generalized
beyond the analytic case. This proof was shared to me by MUMFORD.

Proposition 1.7. Let (X,x) and (Y,y) be normal 2-dimensional singularities, u :
(X,x) = (Y,y) a cover, and (X, x) rational. Then, (Y,y) is rational.

Beweis. Without loss of generality, it is assumed that X resp. Y have singularities at
most in x resp. y. Let ¢ : Y/ — Y be a resolution of singularities forY.Y.m =g louis
meromorphic; let G, be the graph, p’ : G, — X, and p”’ : G,y — Y’ be the projections
Letn : X' — Gy, be a resolution of singularities for G,,. Withv = p’onand f = p” on
as well as h = gf, one has a commutative diagram

X’—>Y’

oL N Ls

X ——Y
One has (EGA III 12.2.4 or Tohuku) two spectral sequences
i) E}" = RPg, (R1f.Ox/) = R*h.Ox,
ii) EJ7 = RPu, (R10,0x) = RO, Oy

Because (X, x) is a rational singularty and v : X’ — X is a resolution of singu-
larities of X, [we have] R70,0x = 0 for g > 0 and R%,0Ox = Ox. Because u is
discrete and proper, [we have] RPu,F = 0 for p > 0 and each coherant sheaf F.
Thus, E;pq = 0 for (p,q) # (0,0) and EX° = u,Ox. Thus, R*h,.Ox = 0 for k > 0.
Since f and g have at most 1-dimensional fibers, E; = 0 for p > 1 or g > 1. Thus,
Rlg. (f.Ox) = E;’O = EX’ = 0 because R'1,0x = 0. Then, it also holds, as we
will show, that R'¢,.Oy = 0, because Oy is a direct summand of f,Ox. Proof

of the latter: let X' % Y” % Y’ be the Stein factorization of f.Y" is normal, a
connected, and b a cover. It holds that f.Ox = b.a.0Ox = b,Oy». One has a na-
tural injection i : Oys — b,Oyn, but also the **trace mapping (Spurabbildung)
t:byOyn — Oy Itholds that t oi = c.Id (c = degree of the cover), and therefore Oy
is a direct summand. (Definition of ¢: for y in Y’, over which b is not branched, we
have (b.Oyn), = 0y, and t (fi,.--. fe) = i+ -+ fe.) Itis steadily continued in
the branching set ***?7?. O



§2. Singularities of Quotient Spaces

2.1 This section is a compilation of the results used in what follows, of CARTAN and
PRILL about quotients of complex spaces (cf. [7,22]). Let X be a normal complex space,
G a proper discontinuous group of automorphisms of X. The topological quotient
space X/ G is provided as follows with a structure sheaf of functional germs Ox/:
Let p : X — X/G be the map of residual classes. Then, it holds for each open set U of
X/G that

Ox/c(U) = {f | fopeOx (p ()}
Theorem 2.1 (Cartan). 1) (X/G,Ox/,g) is a normal complex space.

ii) The map X — X/ G is holomorphic, surjective, discrete, and proper for finite G, so it is
therefore an analytic branched cover.
Definition. A quotient singularity is a singularity which is isomorphic to a singularity
of a quotient X /G of a complex manifold X by a proper discontinuous group G.

The following statement about quotient singularities is well-known (CARTAN [7],
p- 97).

Lemma 2.2. Each quotient singularity is isomorphic to a singularity (C"/G,0), where
G is a finite subgroup of GL(n,C), and 0 is the point corresponding to the origin of C".

Beweis. The singularity of X /G where 0 is the corresponding point is isomorphic
to the corresponding singularity of X /Gy, where G is the (finite) isotropy group of
0. Let (z1,...,2,) be complex coordinates in a neighborhood of 0 = (0, ...,0). One
introduces in an appropriate neighborhood of 0 new coordinates z’ through

S = Z g/—l 9z
8€Go
where ¢’ = (dg¢/9z)o. Then, Gy operates linearly with respect to these coordinates. [

PRILL has completely classified the quotient singularities (C"/G,0) in [22]:

Definition. A subgroup G of GL(n,C) is called small, exactly if no g € G has the
number 1 as an eigenvalue of multiplicity n — 1.

Theorem 2.3 (PRILL). i) Each quotient singularity is isomorphic to a singularity
(C"/G,0), where G is a finite small subgroup of GL(n, C).

ii) Let G and G’ be small subgroups of GL(n,C). Then, the singularities (C"/G,0) and
(C"/G,0), exactly if G and G’ are conjugate.

One compares this also with the work of GOTTSCHLING [11]. If G € GL(n,C)
is an arbitrary finite [sub]group, and H is the normal subgroup generated by the
elements with 1 as eigenvalue of multiplicity n — 1, then C" /H is singularity-free
and the “reduced” group G = G/ H operates equivalently to a small [sub]group on
C"/H.



2.2 The proof presented in this work for the uniqueness of the icosahedral singula-
rity is a transcendental proof, because it uses the topology of the singularity: more
precisely, the local fundamental group. In this section, some well-known results in
this regard will be summarized.

Let X be a complex space, x € X, and X be irreducible at x. A neighborhood U of
x in X is called after PRILL a good neighborhood, if there is a neighborhood basis {U;} of
x, such that each U; — x is a deformation retract of U — x. For all good neighborhoods
U, U — x has the same homotopy type, and one can thus in particular define the
local fundamental group 7tx , of X at x. In order to make the definition also formally
independent from U, one can define

Ty, = lim 71 (U — x),

whereby U goes through the system of neighborhoods of x, or what amounts to the
same thing, the cofinal subsystem of the good neighborhoods. Thereby is the above
definition to be interpreted as in [14], Exposé XIII and Commentaires a I’"Exposé XIIL.

The fundamental fact for 2-dimensional singularities is the following result from
MUMFORD.

Theorem 2.4 (MUMFORD). Let (X, x) be a 2-dimensional normal singularity and
ntx,x = 1. Then, Ox , is regular.

Corollary 2.5 (MUMFORD). Let (X, x) be a 2-dimensional normal singularity and X a
topological manifold at x. Then, X is not singular at x.

Remark. From the examples, which I have described in [5], it comes out that there is
no statements corresponding to this corollary for higher dimensions. Therefore, some of the
following arguments for 2-dimensional singularities do not let themselves transfer to higher
dimensions.

Lemma 2.6. Let f : (X, x) — (Y, y) bea cover of normal singularities and 1tx , be finite.
Then, my,, is also finite.

Beweis. Without loss of generality, let f~1(y) = x. Let V; be a good neighbor-
hood of y; U; a good neighborhood of x with f (U;) C Vj; furthermore V, a good
neighborhood of y with V, C Vj and f~1 (V,) C Uy; finally, let U, = f~1 (V,). Let
V. =Vi—{y}and U; = U; — {x}. Let V; — V| be the universal cover of V; and
U, — U; the universal cover of U . U, and V; are endowed with a complex structure
in a canonical way, such that the covering map is locally biholomorphic. Therefore,
the fiber products

ﬁZ:uz_Xul‘ﬁl and \72:V2_><Vl—‘71 andﬁi:ﬁiXVi—Vi

also reduced normal complex spaces. Because V; — V| is an unbranched topolo-
gical cover, so is U; — Uj an unbranched topological cover and has, due to the
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easy connection with Uj, a section. Then, U, — U, also has a section, and this is a

holomorphic map s : U, — flz. Through composition of s with flz — V3, one obtains
a commutative diagram of holomorphic maps.

ﬁz E— ‘72

L

u, — VvV,

Claim: U, — V; is surjective. Proof: The map is proper, discrete, holomorphic, so
the image is a (closed) analytic subset of V, with the same dimension as V», therefore
a connected component of 172. However, 172 is connected, because ‘71 is connected
and the inclusion of good neighborhoods V,” — V|~ induces an isomorphism of the
fundamental groups.

Let Ox(f) be the degree of f at x, and O (7x,¢) resp. O (7x,) the orders of the

local fundamental groups. Then, it follows, due to the surjectivity of U, — Vs, from
the above diagram that

o (”Y,y) = Ox(f)O (7x,x)

and therewith has the finiteness of 7ty , been proven. O

Let ( X, x ) be a 2-dimensional normal singularity, with a regular resolution with
system of exceptional curves Cy,...,Cy. Let s;; = C; - C;. Then, one can calculate
7% x alone from the intersection matrix (si]-), since it holds (cf. MUMFORD [21], p.12;
HIRZEBRUCH [16]) that:

Lemma 2.7. Under the above requirements, 7ty  is generated with k elements ey, . . ., ek
with the following relations:
eie;” = e;” e;

Si1 ,5i2 Sik __
ejle” ... ep =1.



2.3 From Lemma 2.6 it follows in particular, that a singularity, which admits a
singularity-free cover, has a finite local fundamental group. The converse thereof
does not hold in general (cf. however PRILL [22], Proposition 5). For 2-dimensional
singularities, however, the following holds.

Proposition 2.8. Let (Y, y) be a -dimensional normal singularity. Then, the following
statements are equivalent:

i) (Y,y) is a quotient singularity.
it) There exists a cover (X, x) — (Y, y) with regular Ox ..
iii) 7ty is finite.

Beweis. (i) implies (ii) due to Theorem 2.1 and (ii) implies (iii) due to Lemma 2.6.
To be shown is, that (iii) implies statement (i). Let V be a sufficiently small good
neighborhood of y in Y, V! = V — {y}, and U’ — V' the universal cover, which
has finite leaves because of the finiteness of 7ty . One can (e.g. following FOX [9])
continue this cover to a branched topological map U — V through adding a point
x in a definite way. Following the fundamental result of the work of GRAUERT and
REMMERT about complex spaces [12], one can endow U with a normal complex
Structure, so that U — V is an analytic branched cover. From the easy connection
with U’ follows 7ty x = 1, and therefore Oy , is regular due to Satz 2.4 of MUMFORD.
1y , operates through deck transformations holomorphically on U’ and also on U
with fixed point x and quotient U/ 7ty , = V. Thus, (V,y) is a quotient singularity. [

2.4 a) Theorem 2.3 of PRILL leads back to the classification of the quotient singulari-
ties described in Proposition 2.8 via the enumeration of the conjugacy classes of small
subgroups of GL(2,C). In order to obtain further information about the quotient
singularities, one can e.g. calculate their local rings using invariant theory. This is
for the subgroups of SL(2,C) that were carried out e.g. from KLEIN [19], Kap.IL, §
9-13 and DUVAL [22], p. 94-112. Another method consists of resolving the quotient
singularities. One obtains from the resolution, following Theorems 1.2 and 1.7, the
multiplicities and embedding dimension of the local ring. It shows that the quotient
singularities are classified also by the intersection matrix of their resolutions. This
section handles the connection between the two mentioned classifications.

b) The intersection matrix can be described through the corresponding valued
trees. It will turn out, that for the quotient singularities the trees are all straight-shaped
or star-shaped with three branches. These sorts of valued trees can be described in
the following manner.

Definition. Let n and q be coprime whole numbers 0 < q < n. Then, let (n,q) be the
valued tree



where the b; are whole numbers, which are unambiguously characterized through the
following relations:

bj=2fori=1,...r

" p -
(4) q 1

Following [23], p. 61, (n,q) and (#’, q’) are the same valued trees exactly if n = n’
and g = q' or g9’ = 1(n).

Definition. Let (b; ny,q1;ny,q2;13,q3) be the valued tree

—by, -bl —bl b — b2 —b2
*——@ ° ® ® ® ® @ *———o

» 41

3
A

where the b, b;'( are whole numbers with b, b;c = 2 and the whole numbers n;, q; with
(n;,q;) = 1and 0 < q; < n; are given through the following chained fractions.

n; .
_:bl_
qi bé— 1

b
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c) It is clear, that one can describe the subgroups of GL = GL(2, C) in the following
manner: let SL C GL be the special linear group, ZL C GL the centre and ¢ :
ZL x SL — GL the multiplication. Let H; resp. H, be subgroups of ZL resp. SL
and N; be normal subgroups of H;, for which H;/Nj and Hy/ N, are isomorphic; let
@ : Hy/N, — Hp/Nj be an isomorphism. Let /; denote the residue class of h; in
H;/N; and

H; X H, = {(hl,hz) € Hy x Hy | Fll =@ (Ijlz)}

the fibered product. Finally, let
(H1,N1; Ho, No) o, = ¢ (Hy x ¢ Hy).

Each finite subgroup of GL is of the form (Hj, N1; Hy, N») y and it is not difficult to
notice that the conjugacy class depends on Hj, Ny; Hy, Np) o In fact, it turns out that
in almost all cases it does not depend on ¢. In these cases, the ¢ is omitted therefrom,
and (Hi, N1; Hy, N,) denotes a fixed representation of the corresponding conjugacy
class.

The only case, in which ¢ plays a role, is that where H; and H; are cyclic. In
this case, however, the following description of the group is more practical. One
sees easily, that each non-trivial small [sub]group (Hi, N1; Hz, N7) 0 with cyclic H; is
conjugate to one of the defined-as-follows cyclic groups C;, 4:

eZm'/n 0
Cn,q:{< 0 e2ﬂiq/n)} 0<g<mn,(ng) =1

Cnq and C,y o are naturally conjugate exactly if n’ = nand q = ¢’ or qq" = 1(n).
The Groups H; are denoted in the following manner:

Zy  the cyclic group of order k in ZL,

Cx the cyclic group of order k in SL,

Dr the binary dihedral group of order 4k,
T  the binary tetrahedral group,

O  the binary octahedral group,

| the binary icosahedral group.

The subgroups of SL in this list are naturally determined only up to conjugation.
Let one representation be fixed for each, and indeed so, that one has normal subgroups
C2n < Dn and D2 aT.
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d) Following these preparations, the 2-dimensional singularities can be classified
in the following manner up to an analytic isomorphism, where each of the regular
singularties resp. the trivial group resp. the empty graph are omitted.

Theorem 2.9. i) The 2-dimensional quotient singularities are classified through the
conjugacy classes of small subgruops of GL(2,C). Each small subgroup of GL(2,C) is
conjugate to one of following groups:

Cig 0<g<n, (ngq)=1

(Zom, Zom; Dn, D) (m,2) =1,(m,n) =1
(Zgm, Zom; D, Cop)  (m,2) =2,(m,n) =1
(sz, sz,' T, T) (m, 6) =1

(261111 Low; T, DZ) (m, 6) =3

(sz, sz,' O, O) (Wl, 6) = 1

(sz, sz,’ |, |) (m, 30)

i) Cn,q and Cyy g are conjugate exactly if n = n' and q = q' or gqq’ = 1(n). The remaining
groups are not conjugate.

Beweis. This theorem is a immediate consequence from Theorem 2.3 of PRILL, of
the definition of small [sub]groups and of the well-known classification of the finite
subgroups of GL(2,C) (cf. e.g. [8] p. 57). O

Theorem 2.10. i) The 2-dimensional quotient singularities are exactly the 2-dimensional
normal singularities, which have a regular resolution with one of the following va-
lued graphs: (n,q) with 0 < q < nand (n,q) = 1, (b; n1,q1; 12, g2; 13,q3) with
b=2,0<g; <njand (n;,q;) = 1, where (ny,ny, n3) is a platonic triple (2,2,n),
(2,3,3),(2,3,4),(2,3,5).

ii) These valued graphs of the minimal resolution classify the quotient singularities up to
an analytic isomorphism.

Beweis. Theorem 2.10 is an immediate consequence of Lemma 2.7 and Proposition
2.8 and the following theorem. O

Theorem 2.11. The following table contains in column 1 the small subgroups G of
GL(2,C), in column 2 the valued graphs T' of the minimal resolution of the quotient
singularity (C%/G,0), in column 3 the multiplicity eg of the local ring Oc2 /G0, and in
column 4 the divisor class groups Dg = G/G' of Oz ¢ o-
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G I'c eG Dg
Cug (n,q) 0<g<mn(ng)=1 2+%X(bj—2) Zy

(Zons 22000, D) (212 0img) m=(0=1) 570 24202 Zan X |Zi
(Zan ZaiDns ) (12,12, 1mg) "= O 4
(Zoy, Zoy; T, T) (b;2,1;3,2;3,2) m=6(b—2)+1 b Z3m
(Zow, Zow; T,T) (;2,1;3,1;3,1)  m=6(b—2)+5 b+2 Zom
(Zew» Zom; T,D2)  (6;2,1;3,1;3,2)  m =6(b—2)+3 b+1 Zm
(Zom, Zom; 0,0)  (5;2,1;3,2,4,3)  m=12(b—2) +1 b Zom
(Zom, Zom; O, 0) (b;2,1;3,1;4,3) m=12(b—2)+5 b+1 Zom
(Zom, Zow; 0,0)  (5;2,1;3,24,1)  m=12(b—2)+7 b+2 Zom
(Zom, Zom; 0,0)  (5;2,1;3,1;4,1)  m =12(b—2) + 11 b+3 Zom
(Zow Zomi 1)) (6;2,1;3,2;5,4)  m=30(b—2)+1 b Zyn
(Zow, Zows 1) (6;2,1;3,2;5,3)  m=30(b—2)+7 b+1 Zon
(Zom, Zows 1) (;2,1;3,1;5,4)  m = 30(b—2) +11 b1 v
(Zom, Zow; 1) (6;2,1;3,2;5,2)  m =30(b—2) +13 b+1 Zon
(Zom, Zows 1) (6;2,1;3,1;5,3)  m =30(b—2) +17 b+2 v
(Zow Zomi 1, 1) (6;2,1;3,2;5,1)  m =30(b—2) +19 b+3 Zon
(Zom, Zows 1) (6;2,1;3,1;5,2)  m =30(b —2) +23 b+2 Zon
(Zom, Zows 1) (6;2,1;3,1;5,1)  m =30(b —2) +29 b+4 Z0n

Beweis. (a) First, the calculation of I' : In the case that G is cydlic, i.e. Cy 4, I'g
is already calculated in [15] using the Hirzebruch-Jung algorithm, i.e. using the
modified continued fraction expansion (4) for n/q. The general case can be reduced
to the cyclic case as follows. Let X be the surface resulting from C? by o-process
in 0 and C be the exceptional curve of X. The group G operates on X and X/G is a
modification of C2/G in which the singular point is replaced by the rational curve
C’ corresponding to C. According to 2.3, the singular points of X/G correspond to
the points x € C for which the reduced isotropy group Gy is not trivial. These are,
if G = (Hy, Ny; Ho, Nz)q), at most the points for which the image of H, in PGL(1,C)
has nontrivial isotropy groups as transformation group of P;. This is known to be
the case for exactly 2 point groups if Hj is cyclic, and for 3 point groups in all other
cases. The isotropy groups of Hj are cyclic, the Gy is therefore equivalent to certain
(Zomr, Zom; Conr, Con) ¢ and the G is therefore equivalent to certain Cy,q, s0 that one can
apply the result of HIRZEBRUCH. I will skip the calculation of the 1, 4. Due to Lemma
1.3 it is clear that at the minimal resolution X of X/G the curve Cy corresponding to
C’ is also free of singularities and rational and intersects the other exceptional curves
transversally. One easily sees that Cy actually intersects as claimed in 2.11. Thus, in the
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noncyclic case, to determine I'c = (b; 11, q1; 12, 92; n3,43) only b = —Cp - Cp remains
to be calculated. Let G = (Zpy, Zowm; Hz, Np) and h be the order of the image of G
in PGL(1,C). From the fact that the divisor of a holomorphic function on X must
intersect every exceptional curve with multiplicity 0, one easily obtains the following
formula for b
p=L 92, 4, 2m
n nop ns h

(b) The calculation of eg follows from that of I'; because of Theorem 1.2 and Propo-
sition 1.7. For, if Zy = }_r,C; is the fundamental cycle of a rational singularity and
b; = —C; - C;, then from 1.2 and 1.3 follows

€:2+27‘1‘(bi—2).

One easily sees, that for the fundamental cycle of all I' from 2.11 with the valuations
—b; from b; > 2 it follows that ; = 1. Therefore,

€G:2+Z(bi—2)

and the values of the table result from that.

(c) The divisor class group Dg of the rational singularity (X,x) = (C?/G,0) is,
according to the remarks following Proposition 1.5, isomorphic to H; (53 /G, Z), ie.
to the quotient of G = 7rx , with respect to its commutator [sub]group G’. This allows
one to calculate Dg = G/ G’ without difficulty from G. O

2.5 As a trivial consequence from Theorem 2.10, one obtains the following gene-
ralization of Satz 1 in [4]. In deviation from the usual word usage, it is established
that:

Definition. Let (X, x) be a 2-dimensional normal singularity with a minimal reqular
resolution and associated valued graph T. (X, x) is rigid, if (X, x) is the unique singularity,
up to isomorphism, with a reqular resolution with valued graph T'.

Of course, ( X, x ) cannot be rigid if I has a point that is a vertex of more than 3
1-simplices. In terms of examples,

—2e ® o2
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belongs to non-rigid rational singularities. However, even if (X, x) is rational and
every point of I lies on at most 3 1-simplices, need (X, x) not be rigid. One example
for such a I is, following a letter message from TJURINA and ARTIN:

It is therefore that the following trivial consequence from Theorem 2.10 all the
more remarkable.

Corollary 2.12. The 2-dimensional quotient singularities are rigid.

This corollary is of course the reason for the the definition of rigidity given above.
It would have been more natural and weaker to require, that (X, x) is determined
through the first infinitesimal neighborhood of the system of exceptional curves. — I
would still like to note, that TJURINA is said to have shown: All rational triple points
are rigid.

2.6 This section elucidates the connection between the analytic classification of the
quotient singularities on one hand, and the topological investigations of SEIFERT and
THRELFALL about the discontinuity domains of finite **bewegungsgruppen of the
three-dimensional sphere and about Seifert fiber spaces as in V.RANDOWS results
about tree manifolds on the other hand.

(a) Every quotient singularity ( C2/G,0 ) has the 3-dimensional closed orientable
manifold Mg = S3/G as boundary of a good neighborhood, where S® is the standard
3-sphere in C? considered as a G-subspace. In [28], Ch. III, it is shown that the totality
of the neighborhood boundaries M obtained in this way coincides with the set of
all manifolds S/ H, where H is an arbitrary finite subgroup of SO(4). If H is fixed
point free on S3, then S®/H is called a spherical space form following HOPF. The
homeomorphism problem for these manifolds is completely solved: If G is cyclic,
then Mg is a lens space, more precisely: Mc,, = L(n,q), and according to BRODY
[6] goes: L(n,q) and L (n’,q") are homeomorphic exactly if n = n’ and g = +4'(n) or
qq' = +1(n). For non-cyclic small subgroups G of GL(2,C) the classifications agree
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up to conjugation on the one hand and up to abstract isomorphism on the other hand,
as can easily be shown through consideration of G/G’ and G/ center (G) (cf. [28],
§6). Hence, for non-cyclic small Gq, G,, the manifold Mg, is homeomorphic to Mg,
exactly if Gj is conjugate to G,. For a two-dimensional normal singularity (X, x) with
non-cyclic finite 7x ,, the analytic structure is thus uniquely determined through the
topological, up to isomorphism.

(b) Let U be the full torus
U ={(z1,2) € Clz1|=1, |z £1}
and V the circular disk

V= {(zl,zz) € C?|z1 |= 0, |z2] < 1}.

U is oriented, and indeed, if z; = €2™% and z, = x + iy, through the sequence
of coordinates (¢, x,y). Let f : U — V be the projection, that is f (z1,z2) = z. The
groups C, 4 defined in 2.4 operates on U and V as subspaces of C2. Let f,,, : U/Cy g —
V'/Cy,q be the map of quotient spaces induced by f, and U/C,, 4 be provided with the
orientation induced from U.

Definition. A Seifert fiber space is a map f : X — Y of a three-dimensional closed
manifold X out of a 2-dimensional manifold Y with 1-spheres as fibers, which over suitable
neighborhoods of the point of Y is either locally trivial or of the same type as an f, 4. (For
generalizations cf. [18].)

The Seifert fiber spaces with an orientation for X and orientable Y are classified in
[27] through a system of invariants

(O,0;p | B;a1, B1s---50n, Bn) -

Here, O resp. o refer to the orientability of X resp. Y, and p is the genus of Y. The
whole number B is the closure invariant (for the definition cf. [27], p.181), and the
coprime whole numbers a;, B; with 0 < B; < a; establish the oriented type f,, g, with
the exceptional fibers. With reversal of the orientation,

(O,0;p | B;a1,B1;-- -, ar, Br)

changes into
O a;p| —p—riar, 00— Br..;0r,ar = Br) .
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Now, let G be a finite small subgroup of GL(2,C). The group G operates on S°
and Pj, and thereby one obtains from the Hopf fibration S3 — P; a Seifert fiber space

$3/G — P,/G.

Mg = S3/G is oriented as the neighborhood boundary of a complex singularity (for
the orientation of the boundary of an oriented manifold see the textbook of topology
by SEIFERT-THRELFALL), and thus Mg is an oriented Seifert fiber space. The Seifert
invariants of Mg have been already calculated in [28]. Through comparison with
Theorem 2.11, one obtains:

Lemma 2.13. If the singularity (C?/G,0) has a resolution with the valued graph T g =
(b; n1,q1; 12, q2; 13, q3), then its neighborhood boundary Mg as a Seifert fiber space has the
invariant
(0,0;0 | =b;n1,q1;12,q2;13,93) -

In [27] all ( O,0;0 | B;a1,B1;---;a, Br ) with finite fundamental group were
enumerated. By comparison with the fiber invariants of M determined in [28] or in
2.11 and 2.13, the main theorem of [28] follows: The neighborhood boundaries of the
2-dimensional quotient singularities are precisely the total spaces of the orientable
Seifert fibrations over S? with finite fundamental group.

(c) If a 2-dimensional normal singularity has a regular resolution with valued
tree I, then a suitable neighborhood boundary M is the tree manifold corresponding
to I' in the sense of v. RANDOW [23] (cf. also [16], [17]). .RANDOW proves in [23],
Ch. V, that every orientable Seifert fiber space over 52 is homeomorphic to a star-
shaped tree manifold, and that conversely every star-shaped tree manifold with a
certain additional condition allows a Seifert fibration. This fibration is in certain cases
uniquely determined by the tree structure or even by the homeomorphism type (cf.
also [30]), for example, when the fundamental group is finite and non-cyclic or when
the fiber space is a Poincaré space. Therefore, one could have also derived Theorem
2.11 from the results of [28], § 8 and [23], Ch. V. However, given the complexity of the
topological arguments, I considered a direct analytical proof desirable.

(d) Following a lemma in [16], a 2-dimenional singularity, whose neighborhood

boundary M is a Poincaré space, has a regular resolution. M is thus a tree manifold.
If M is star-formed, then so is it in a unique way a fibered Poincaré space.
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The fibered Poincaré spaces have been determined in [27], §12. One interesting
class of fibered Poincaré spaces, which includes those constructed by DEHN and
considered in [27], §13, are the neighborhood boundaries of singularities ¥, 4, 4,,
defined in [5], where the a; are pairwise coprime.

Loy = {(21,22,23) €C? 2] + 252 +25° =0,|z| = 1}.
These are Poincaré spaces following [5], p. 6, and they are obviously fibered with 3
exceptional fibers through the operation of S' = {t € C | |t| = 1} with

(Zl, Z», 23) — (tu2a321, ta1a322’ ta1ﬁ223) .

§3. The Icosahedral Singularity

3.1 This paragraph is about the question of which analytic local rings are factorial.
It appears that the answer to this question for different dimensions turn out very
differently.

For dim Ox , = 4, one has the following Theorem of GROTHENDIECK (cf. [14],
Exposé XI, Cor. 3.14 and [29], §5).

Theorem 3.1 (GROTHENDIECK). Let (X, x) be a normal complete intersection and O,
be factorial for all y except for a 4-codimensional analytic [sub]set. Then, Ox  is factorial.

For the case of a isolated hypersurface singularity, one can also deduce this theo-
rem easily from a result of MILNOR (cf. [5], p. 8).

Among the local rings of 3-dimensional hypersurface singularity, there are both
infinitely many non-factorial and infinitely many factorial rings. In terms of examples,
goes (cf. [5], Korollar 1)

Proposition 3.2. Let a1, ay, a3, as be natural numbers, one of which is relatively prime to
the rest. Then, the following analytic local ring is factorial

C {x1,x2,x3, x4} / (x' 4+ x5 + x3° + x3*) .

3.2 Let O = Og be the local ring of C? at 0 and O its completion. The binary

icosahedral group | operates on C? with fixed point 0, and hance also on O and 0.
Let O' resp. O' be the subrings of l-invariant elements of O resp O. Naturally,

OI = OC2/1,0 and @l = 6\'

KLEIN has determined in [19], Part I, Ch. II, §13 explicitly with invariant theory, three
generators for O' and the consisting relations between them. It follows

O'=C{x,y,z}/ (x2 + 3+ z5>
O' = C[x,y,2]/ (xz +1° +z5> .
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Theorem 3.3. The rings O and O' are, up to isomorphism, the unique factorial two-
dimensional analytic local ring.

Beweis. By Theorems 1.4 and 2.11, O and O are factorial. Now, conversely, let (
X, x ) be a 2-dimensional singularity and Ox . be factorial and not regular. Ox , is
normal as a factorial Noetherian ring. Let f : X’ — X be the minimal resolution of
the singularities of X and

n
— U X;
i=1

where the X; are the irreducible components. Let S = (X; - X;) be the intersection
matrix. By Corollary 1.6, (X, x) is rational and detS = £1. Let Z = }_r;X; be the
fundamental cycle. Furthermore, cycles Z; = ) r;;X; are defined by the condition
Z; - Xi = —0jx. From det S = +1 it follows

(1) rij € Z.
The symmetry of S implies
(2) Tij = Tji-

Since S is negative definite and X; - X; = 0 for i # j, and since Z; - Xi < 0, it follows
(cf. [2], p- 130)

3) Tij > 0.

The minimality of Z implies due to (1) and (3), that Z < Z; fori = 1,...,n. On
the other hand, the relation Z = — Y (Z - X;) Z; with Z - X; < 0 follows due to the
definition of the Z;. Hence, it has to hold fora k € {1,...,n} that Z = Z;, so

4) ri=ry fori=1,...,n.

Z = Zjimplies r; = r;;. Hence, it follows in particular from (2) and (4): rp = rig =
rkj = rjx = rjand so

(5) nw=r; forj=1,...,n

By Theorem 1.1 goes

(6) Z-Z+Z7Z-K+2=0.

By Lemma 1.3 i), the X; are singularity-free and rational, and therefore
(7) Xi-K=-2-X;-X.

The equations (4), (6), (7) and the definition of Z; imply

n

(8) =2-) (X;-X;+2)r
i=1
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However, due to the minimality of the resolution f,

9) —(X;-X;+2) =0.

The relations (5), (8), and (9) imply

(10) X X;=-2 fori=1,...,n

By the classical classification of 2-valued Dynkin diagrams, it follows for the valued
graph I of the resolution f from (10) and detS = £1

T =(2;2,1;3,2;5,4).

Hence, it follows from Theorems 2.10 and 2.11
(X, x) = <C2/|, 0) ,

and so

Oxx =0
q-e.d. O

3.3 (a) While so far in this work only analytic local rings, i.e. local rings of complex
spaces, have been considered, in this last section some statements about other factorial
local rings shall be derived from the main theorem 3.3. There, I have used not-easy-
to-prove comparable theorems of ARTIN and HIRONAKA. The following proofs likely
allow simplification.

Corollary 3.4. The local rings O and O are, up to isomorphism, the unique factorial
complete two-dimensional local rings with residue field C.

Beweis. Let R be a factorial complete 2-dimensional local ring with residue field
C. Then R is normal as a factorial Noetherian ring. According to ARTIN, every com-
plete normal 2-dimensional local ring with a residue field k of characteristic 0 is the
completion of a local ring of an algebraic surface over k (see [2'], p.36). Thus, let R,
be an algebraic-geometric local ring over C with R = R,. According to GAGA [30],
Prop.3, one can, in a canonical way, embed R, into an analytic local ring of the same
dimension Ry, so that it holds for the completion R, = ﬁh. Ry, is, according to MORI,
factorial, since ﬁh is factorial (cf. e.g. [3], §3, n 7, Prop. 4). Thus, by Theorem 3.3
follows R;, = O' and therefore R = R}, = O'. That O' is factorial follows e.g. from
[25], Satz 1. O

(b) SAMUEL has stated the following conjecture in [24], p. 171: If R is a complete
factorial local ring, the formal power series ring R[X] is factorial. Examples by SAMU-
EL and others show that the assumption of completeness cannot be omitted. To my
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knowledge, the conjecture has not yet been fully decided. For example, it is correct
for R with codh R = 3 (SCHEJA [26], Theorem 2). For dim R = 2, Corollary 3.4 shows
that the conjecture is correct under the additional assumption that the residue class
field is C. SCHEJA proves in [26], Theorem 4, that O [X] is factorial.

(c) There are many algebraic-geometric local rings over C, i.e. here: localizations
of a finitely generated algebra over C with respect to a maximal ideal, which have
dimension 2 and are factorial. In terms of examples, according to SAMUEL, the 2-
dimensional algebraic-geometric local rings

(Clx1,x2,x3] / (7" + 22 +45%))

where m is the maximal ideal generated by xi, x2, x3, are factorial, if the natural
numbers 4; are pairwise coprime (cf. [3], §3, p. 99, Exercise 7 and §3, n0 4, prop. 3).
However, the completion of these local rings

Clx1, x2, 23]/ (x]' + 252 + x5)

are by Corollary 3.4 not factorial, if a; > 1 and {ay,a,a3} # {2,3,5}. The following
corollary shows, that the factoriality first gets lost not during completion, but rather
already during Henselization.

Corollary 3.5. Let the 2-dimensional local ring R be the Henselization of an algebraic-
geometric local ring over C. Then, R is factorial exactly if the completion R is isomorphic to

@OT @I.

Beweis. Let R be the Henselization ﬁa of the algebraic-geometric local ring R;.R,
is Noetherian and therefore R, is also Noetherian, and since it is also factorial, R, is
normal. Then R, and the analytic local ring R;, corresponding to R, are also normal.
Therefore, the spectra of these local rings outside the closed points m resp. my, resp. 7i
are regular, and therefore (cf. [14], ExposéXI, Cor.3.8) the divisor class groups of these
local rings are the same as the Picard groups of the ***gelochten spectra. According to
an unpublished result by HIRONAKA, the following generally applies for a local ring
R, of an isolated singularity of an algebraic variety over C

Pic (Spec (ﬁa> — ﬁl) = Pic (Spec (Rj) —my,) = Pic (Spec (I/{\a> — 1?1) .

R is thus factorial, exactly if R is factorial, and therefore the corollary follows trivially
from 3.4. O

Addition to the correction. Under the use of a theorem of ARTIN, 3.5 can be improved in the following
manner. If the Henselization of a 2-dimensional algebraic-geometric local ring over C is factorial, then
it is isomorphic to the Henselization of Cx, y](y or of (C[x,y,z]/x* + y° + 2°) (x,2)"
JOSEPH LIPMAN has shared with me, that at the same time of the following generalizations of

results of this work, he has obtained: Corollary 1.6 holds for each excellent henselian 2-dimensional
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normal local ring R with algebraically closed residue field k. If such an R is thus factorial, then the
minimal resolution has by §3 the valued graph (2;2,1;3,2;5,4). For chark # 2, 3,5, the maximal ideal
m is generated by a system of parameters x,y, z with x> + 1> + z°> = 0, and an analogue to Corollary

3.4 holds therefore, under these general requirements.
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